Table of Contents

1.0 INTRODUCTION
1.1 Purpose of the Master Plan
1.2 Process for Developing the Master Plan
1.3 Institutional Planning
1.4 Accreditation
1.5 Programs of Study

2.0 PRIMARY FACTORS IN CONSIDERATION
2.1 City of Wenatchee Comprehensive Plan
2.2 Projected Growth of Student Enrollment, Administrators, Faculty & Staff
2.3 Projected Growth of Programs
2.4 Repair and Replacement of Aging Facilities

3.0 ASSESSMENT OF EXISTING CONDITIONS
3.1 Existing Campus Site Plan, Property Boundaries, Adjacent Property Acquisitions
3.2 Classroom Utilization Analysis
3.3 Analysis of Programmatic Adjacencies on Campus

4.0 PROPOSALS FOR FUTURE CAMPUS MODIFICATION
4.1 Ongoing Projects
4.2 Six Year Campus Plan
4.3 Twelve Year Campus Plan
4.4 Beyond Twelve Year Campus Plan
4.5 Recommendations for Potential Property Acquisition

5.0 CAMPUS DESIGN STANDARDS
5.1 Facility Design Requirements
5.2 Construction Materials and Systems
5.3 Security
5.4 Hardscape
5.5 Screening
5.6 Provision for Alternative Commuting Vehicles
5.7 Landscaping
5.8 Identifying Elements

6.0 APPENDICIES
Appendix A: Questionnaire
Appendix B: Wenatchee Valley College Strategic Plan 2013-2017
Appendix C: Excerpts from the City of Wenatchee Comprehensive Plan
Appendix D: Wenatchee Campus Classroom Utilization Study – Fall Quarter 2011
Appendix E: Omak Campus Classroom Utilization Study – Fall Quarter 2013
Appendix F: Wenatchee Campus Building Assessments
Appendix G: 2013 Facility Condition Survey
Appendix H: Wenatchee Campus Project Request Reports
SECTION 1.0
INTRODUCTION
1.0 INTRODUCTION

A Brief History of Wenatchee Valley College

WVC opened as a private institution in 1939 as a result of donations from 51 local citizens. Two years later, it became part of the state’s public education system. Classes were held on the third floor of Wenatchee High School, on the corner of King and Idaho streets, until the donation of the A. Z. Wells house in 1949.

Wells House, located on a five-acre tract on 5th Street, was built of hand-hewn stone from the Columbia River and adorned with castle-like turrets. It housed offices and classrooms, then later became a dormitory after the construction of additional buildings. Adjoining landowners sold acreage to the college at cost, expanding the campus to its current 60 acres. Wells House is owned by the Wells House Committee, which restored and maintains the historic mansion.

In 1967, Community College District 15 was formed, expanding WVC's district to include all of Chelan, Douglas and Okanogan counties. Classes were first held in Okanogan County in a former Omak hospital building. The Omak campus was established in the mid-1970s on the site of a former Catholic school, occupying a half block near downtown.

Mission

Wenatchee Valley College enriches North Central Washington by serving educational and cultural needs of communities and residents throughout the service area. The college provides high-quality transfer, liberal arts, professional/technical, basic skills and continuing education for students of diverse ethnic and economic backgrounds.

Core Themes:

- Educational Achievement

 Students will achieve their goals for education and employment through preparation for successful transfer to the baccalaureate level, development of the professional/technical expertise for successful entry into the workforce, or proficiency in college readiness skills needed to pursue goals for further education and employment.

- Support for Learning

 WVC’s non-instructional programs and services will support students’ attainment of their educational goals and promote access to all of the college’s educational opportunities.

- Responsiveness to Local Needs

 WVC’s degrees, programs, courses and services will be responsive to local demand and community needs. WVC will actively seek community input through its foundations, advisory committees, and collaboration with external organizations.

- Diversity and Cultural Enrichment

 Students and staff will be supported by practices and policies that create an inclusive environment for learning and work. The college community and residents of District 15 will have opportunities to experience diverse and multi-culturally rich perspectives through curriculum, educational programs, and special events.
The Physical Area Wenatchee Valley College Serves

The Wenatchee Valley College district is the size of Massachusetts and Rhode Island combined. Covering more than 10,000 square miles of Chelan, Douglas and Okanogan counties; it is the largest district in the state.

The population for the tri-county service area of WVC, in 2012, was estimated to be 154,312.
The Omak campus, located 90 miles north of the Wenatchee campus on the sunny slopes of the Cascade Mountains, serves the residents of Okanogan County in North Central Washington. The campus was established in the 1970s.
116 West Apple Avenue, Omak, WA 98841

Demographics of Wenatchee Valley College

In the 2012-13 academic year, the number of students attending Wenatchee Valley College was 7,292. Full-time students comprised 66.5% of this number. Of 7,095 students attending face-to-face classes, 80% attended classes at the Wenatchee campus; 20% at Omak. Twelve percent of students were enrolled in non-credit courses only.

People of color comprise 42% of the students attending the college; with 35% being Hispanic/Latino, and 2.9% Native American.

The average age of the students at Wenatchee Valley College is 27.5 years old.

1.1 Purpose of the Master Plan

The master plan defines how Wenatchee Valley College campuses and facilities will be developed to support the attainment of the college’s mission and core themes; and fulfill the expectations of the regulatory agencies and accrediting bodies that set standards for higher education. The 2013 Facilities Master Plan reflects what was achieved under the previous plan adopted in 2008 and incorporates the colleges’ 2013 Strategic Plan to provide guidance for meeting the college’s current and future facilities needs. The plan integrates factual information with short-term and long-term views of the future to support decision-making for the renovation, growth, and development of the college’s physical resources.

Primary Goals

The purpose of this document is to summarize the composite vision of the administrative leaders, faculty, staff, and students who participated in the many discussions which formed the basis of the Master Plan.
Section 1.0 Introduction

The Master Plan is intended to provide the College with recommendations when making future decisions regarding:

- Strategies to accommodate future growth of students, faculty, administrators, and staff.
- Future property acquisitions
- Ensuring that appropriate space is left for locating future buildings and green spaces
- Acknowledging current deficiencies on campus and providing recommendations for remediation
- Optimum classroom size to use in planning future construction/renovation projects
- Setting an initial basis for campus design standards to reinforce the unique image/identity that is Wenatchee Valley College

The information presented hereafter is based upon a frank analysis of existing conditions on campus and attempts to make realistic projections about the needs of the campus within the next 12 years. The recommendations presented are focused around the six year (2019), twelve year (2025), and beyond twelve year (2025+) benchmarks.

Updating the Master Plan

It should be understood that any Master Plan is a continual work in progress. This document represents a “snapshot in time” of the specific conditions, goals, and needs of the College during the study period which took place from April 2013 to October 2013. As such, it will be necessary to update and expand upon the information presented within this Master Plan to reflect the ever-changing nature of a higher education institution. It is recommended that Wenatchee Valley College adopt a regular schedule to visit this Master Plan on a yearly basis; and to update, and build upon, this Master Plan every 6 years after the completion of this study.

1.2 Process for Developing the Master Plan

A series of strategies were used to collect information and elicit comments on the concepts presented within the Master Plan including: interaction with the Master Planning Committee, distribution of a questionnaire, and meetings with representatives from the Cities of Wenatchee and Omak, Washington.

Interaction with the Campus Master Planning Committee

The College Master Planning Committee served as the primary contact and decision-making body during the master planning process. Composed of administrators, faculty, and staff, the committee met with representatives of Integrus Architecture to brainstorm ideas, discuss issues, and comment on proposals for the Facilities Master Plan.

The introductory meeting with the committee discussed the importance of a master plan as well as the strategies to be used to collect information during the planning process. There are three major influences, or drivers, considered during the master planning process: Academic, Facility, and External. Examples of each type of driver have been listed below.

- Academic Drivers: Growth in student enrollment and trends in education, departmental goals (new courses, programs, or degrees), accreditation standards, administrative policies, and new instructional technologies.
- Facility Drivers: Inadequate facilities (obsolete designs, high energy or maintenance costs, poor image) and acquisition of new properties.
- External Drivers: Competition with other institutions, occupational demands in response to the economy and our culture, funding, community wishes or needs, and State/City/County initiatives and partnerships.

Subsequent meetings with the Master Planning committee included tours of Sexton and Wells Halls and presentations of the six and twelve year Master Plan proposals. Meeting minutes and an electronic questionnaire were used to confirm and extract comments from the Master Planning committee for inclusion into this document.

Questionnaire

At the beginning of the discovery phase, members of the Master Planning committee were asked to review a series of questions, designed to acquire very basic information necessary for the Master Plan (see Appendix A). An all-campus email was circulated to elicit responses from faculty, staff, and students. A variety of responses were returned from a broad campus demographic; and the resulting conclusions were incorporated into the various figures, tables, and drawings herein.
Section 1.0 Introduction

Common themes that became apparent throughout the completed questionnaire included:

WENATCHEE CAMPUS

Replacement of Wells Hall was a consistent request of respondents. The theater wing in this building, of newer construction, would be remodeled and updated. Other buildings in need of remodeling include Sexton, Batjer, and Smith Gym.

Students and faculty request additional informal gathering spaces. The newly renovated library is currently overcrowded because this is the only place for students to collaborate. The cafe was also an issue of note. Respondents would appreciate a dining facility with longer operating hours and a larger eating area. A student activity center was a proposal that may address some of these gathering space issues.

Classroom space and flexibility were also common concerns of the respondents. Most who mentioned this topic requested larger classrooms, with a great need for technological upgrades and integration. Some also focused on the need for better wireless access throughout the campus.

The campus atmosphere and appreciation of the landscaping were obvious assets throughout the answers to the questionnaire. Students and faculty treasure the green spaces and feel they should remain. Signage, for projecting campus identity and wayfinding, is a main concern. A formal entrance to campus should be clearly marked and welcoming. Inadequate site lighting poses safety and security concerns to those students enrolled in evening classes. Poor east-west pedestrian flow across campus prompted the request for better circulation; and the need for sidewalks that mimic the actual foot traffic between buildings.

OMAK CAMPUS

Students and faculty feel that the campus facilities do not reflect the great things that are happening on the Omak campus. As all of the buildings on this campus were built for previous owners, WVC has done a commendable job of modifying the spaces to accommodate their needs. This small campus is beautifully maintained, but most of the structures are showing their age. Respondents to the questionnaire identified a need for more common spaces for students to gather and interact. Increased student services are also lacking. The necessity for food services was mentioned, repeatedly. A better campus feel, with a clearly identified entrance and center, are requests that were also consistent throughout the survey.

Educational needs include more large classrooms, a larger library, and a resource center with an updated tutoring center. A performance space would also aid in community interaction. Distance learning is a priority, and staple, of this campus; as several classes tie in to those held at the Wenatchee campus. Respondents requested an ITV space for this purpose.

Safety concerns include the lack of site lighting for students attending evening classes. Pedestrian safety is also an issue, with campus facilities spanning the street. There are fire and egress concerns as a result of houses being used for classes and student services.

Interaction with Local Jurisdictions

Meeting with the City of Wenatchee

WVC and Integrus met with the City of Wenatchee on June 6, 2013. The purpose of the meeting was to discover any concerns the city may have with the master plan. Discussion was held concerning the processing of permits and the current “high density residential” zoning of the college’s property. Individual departments effected by the college’s future plans also presented concerns or requirements for implementing the master plan.

As of June 2013, the college’s twelve year plan included the following; these main points were presented at this meeting:

- Replace Wells Hall – keep 5th wing. The City noted that the Historic Preservation Board will need to create an impact review for this building. The new building could be a sister to Wenatchi Hall.
- Sexton Hall renovation
- Expand the gym
Following the college’s presentation of the twelve year plan, the city presented comments regarding the master plan document. With changes in leadership at the City of Wenatchee, the development code has changed. Conditional use permits are now issued for higher education. This is because the college’s property is still zoned as “high density residential”. In order for the City to determine the most appropriate permitting path, each project on campus will be treated separately. Water, storm water and sewer can accommodate any future expansion of the campus.

The City asked for the following additions to the facilities master plan:

- Proposed building heights
- Setbacks of new buildings/additions to property lines within campus property
- Lot coverage calculations
- Distances from other buildings
- Water, sewer and storm service requirements and prediction of future infrastructure needs
 - Include a campus storm water system map
 - Percentage calculations of student body/faculty for parking
 - Sign standards

1.3 Institutional Planning

NWCCU Standard 3 outlines expectations for institutional planning. It should be purposeful; systematic; offer opportunities for input by appropriate constituencies; provide guidance for decisions on resource allocation; and lead to the achievement of the intended outcomes of the colleges’ programs and services, achievement of its core themes, and fulfillment of its mission.

The Facilities Master Plan is integrated with other institutional planning at WVC. It contributes to achievement of the Core Themes; most directly, Support for Learning and Responsiveness to Local Needs. The environment created by WVC’s physical facilities supports students’ attainment of their educational goals. Classrooms, laboratories, libraries, and athletic facilities, as well as offices and work spaces; enable college programs and services to be responsive and comprehensive.

The WVC Strategic Plan was updated in 2012-13 through a participative process involving input from all areas of the college. A task group of employees and students from across the district evaluated strengths, weaknesses, opportunities, and threats that will impact WVC’s ability to achieve its core themes and fulfill its mission over the next few years. This process identified three key strategic directions for WVC. One of these, along with its accompanying strategic priorities for action, speaks directly to facility and infrastructure needs that are addressed through the Facilities Master Plan:

Reimagine instructional space and infrastructure to best support teaching and learning in all areas of the institution.

- As fundamental assumptions about time and space for learning change, provide relevant services, staffing, and tools to support student success through teaching, learning, student development, and other resources
- Replace or remodel college facilities to enable best practices in instructional design and student support
- Provide learning support and student support in all learning environments inside and outside the classroom
- Create and support professional development opportunities that engage faculty and staff in new and creative approaches to teaching and student services
- Provide teaching support that sustains college-wide adoption of new strategies and tools
1.4 Accreditation (Academic Driver)

Wenatchee Valley College maintains institutional and program accreditations through several external organizations. The accreditation standards defined by these organizations specify criteria that the college is expected to meet.

WVC is accredited by the Northwest Commission on Colleges and Universities (nwccu.org); an independent, non-profit membership organization recognized by the U.S. Department of Education as the regional authority on educational quality and institutional effectiveness of higher education institutions in the seven-state Northwest region. NWCCU accreditation standards relevant to facilities planning include:

Consistent with its mission, core themes, and characteristics, the institution creates and maintains physical facilities that are accessible, safe, secure, and sufficient in quantity and quality to ensure healthful learning and working environments that support the institution’s mission, programs, and services. (2.G.1)

The institution develops, implements, and reviews regularly a master plan for its physical development that is consistent with its mission, core themes, and long-range educational and financial plans. (2.G.3)

The college’s medical laboratory technology program is accredited by the National Accrediting Agency for Clinical Laboratory Sciences (naalcs.org). Standard III.C requires accredited programs to provide physical resources, including facilities, which are sufficient to achieve program goals.

The nursing program at Wenatchee Valley College is accredited by the Accreditation Commission for Education in Nursing (acenursing.org). Standard 5: Resources requires that “physical resources are sufficient to ensure the achievement of the nursing education unit outcomes, and meet the needs of the faculty, staff, and students.”

The medical assistant program is accredited by the Commission on Accreditation of Allied Health Education Programs (caahp.org) upon the recommendation of the Medical Assisting Education Review Board (maerb.org). Standard III: Resources specifies that program resources, including classroom, laboratory, and ancillary student facilities, “must be sufficient to ensure the achievement of the program’s goals and outcomes.”

The automotive technology program is accredited by the National Automotive Technicians Education Foundation (natef.org) in recognition that the program prepares students to meet National Institute for Automotive Service Excellence standards. Standard 9: Facilities provides criteria for evaluation of learning facilities, including training stations, classrooms, office space, storage, support facilities, and ventilation.

1.5 Programs of Study (Academic Driver)

As a comprehensive community college, WVC offers programs that prepare students for transfer to a four-year university; professional/technical training leading to employment in over a dozen fields; courses that prepare students for college-level instruction, including reading, writing, math, and English as a second language; and non-credit continuing education courses that allow individuals to explore topics of interest or complete short-term workforce training.

Current programs of study:

WVC offers several associate degree options that prove the first two years of a bachelor’s degree in preparation for transfer:

- Associate of Arts and Sciences
- Associate in Applied Sciences-Transfer (selected professional/technical programs)
- Associate of Science – Transfer
- Associate of Business – Transfer
Professional/technical programs include Associate of Technical Science or Certificate of Completion in the following fields. Programs are offered at both the Wenatchee and Omak campuses unless indicated.

- Accounting
- Aerospace Electronics
- Agriculture (Wenatchee)
- Automotive Technology (Wenatchee)
- Business
 - Retail Management
- Business Computer Technology
- Chemical Dependency Studies
- Computer Education Center (Wenatchee)
- Computer Technology (Wenatchee)
- Criminal Justice
- Digital Design (Wenatchee)
- Drafting Technology (Wenatchee)
- Early Childhood Education
- Electronics - Industrial Technology
- Environmental Systems and Refrigeration Technology
- Industrial Technology Programs Overview
 - Aerospace Electronics (Wenatchee)
 - Drafting Technology (Wenatchee)
 - Electronics (Wenatchee)
 - Welding and Fabrication (Wenatchee)
- Medical Assistant
- Medical Laboratory Technology
- Multi-Occupational Trades (Wenatchee)
- Natural Resources (Wenatchee)
- Nursing
- Radiologic Technology (Wenatchee)
- Tribal Gaming Management (Omak)
- Welding & Fabrication - Industrial Technology (Wenatchee)

WVC is submitting an application to the State Board for Community and Technical Colleges to offer a bachelor's degree in nursing, with enrollment of students planned for fall 2014. Additional four-year degree programs may be developed to meet community needs.
SECTION 2.0
PRIMARY FACTORS IN CONSIDERATION
Section 2.0 Primary Factors in Consideration

2.0 PRIMARY FACTORS IN CONSIDERATION

Several documents exist, both at the College level and at the City level, which set forth a series of criteria to be considered during the Master Planning process. These documents influence both the definition of problems to be solved and the recommended solutions presented hereafter.

Two overreaching drivers influenced the subsequent recommendations presented in this document. The master planning committee’s strategic plan is an academic driver that communicates a clear path for the college. Combined with the City of Wenatchee’s comprehensive plan, an external driver; this master plan document presents solutions that equally address civic and collegiate goals.

2.1 City of Wenatchee Comprehensive Plan (External Driver)

As part of the City of Wenatchee, Wenatchee Valley College is subject to the “Wenatchee Urban Area Comprehensive Plan,” adopted April 26, 2007 (See Appendix C). It is the desire of the College to coordinate future plans for the school with those of the City. To this effect, Integrus summarized pertinent sections of the Comprehensive Plan, below.

Wenatchee determines three interconnected subjects as most important to shaping the city’s future: Economic Development, Quality of Life, and Learning and Human Services. Policies supporting these subjects include building and sustaining work force education and continuing education programs. These are critical components to community development by providing life-long learning opportunities. They are also part of Wenatchee’s strategy to attract entrepreneurs and the creative class by supporting the development of educational infrastructure.

Quality of life policies set forth by the City of Wenatchee are linked to the cultural and educational nature of the policies, above. These initiatives include the maintenance and creation of a comprehensive system of pedestrian and bicycle trails; and providing more green space, community gardens and quality streetscapes with street trees and sidewalks. New non-residential development in existing residential neighborhoods “should be designed and operated to be compatible with the existing neighborhood”. Protecting and identifying the edges of neighborhoods and districts is also an important policy. The city proposes to accomplish this through compatible design and development standards, signage, and landscaping. Wenatchee also strives to become a leader in sustainable development by requiring all new public development to employ green building techniques.

In conclusion, the City of Wenatchee’s comprehensive plan supports the further development of Wenatchee Valley College. Its policies of shaping the City’s future through education, arts and sustainable design are in alignment with the College’s past and future plans.

2.2 Projected Growth of Student Enrollment, Administrators, Faculty & Staff (Academic Driver)

Demographic data indicates that, while there will be some small fluctuations up and down, enrollment demand should be steady within WVC’s district. Projections for the size of high school graduating classes indicate that the class of 2014 will be the smallest over the coming five years (2015 students compared to 2199 in 2012). Please see the bar graph on the next page. The largest class will be in 2016, with 2248 projected graduates; this group has the potential to increase enrollment for Wenatchee Valley College.
WVC’s district is considered “underserved” for higher education compared to other regions of the state. Both the rate of adults (18 and over) participating in higher education, and the rates of educational attainment overall in the adult population (how many have earned a degree) are low compared to the rest of Washington. Addressing this unmet need is a prime focus of the college, and a driver behind the goals presented in this document.

Data Sources

The State Board for Community and Technical Colleges (SBCTC) has developed three broad goals to guide the system over the next 10 years. Attention to these goals will provide two-year colleges with a framework for system innovations and development, pursuit and use of resources, and measuring progress. Student success is one of the main goals. Specifically, the board intends to achieve increased educational attainment for all residents of the state. The SBCTC System Direction document is located at www.sbctc.ctc.edu/general/a_systemdirection.aspx.

The overarching goal of the SBCTC Mission Study is to find more and better ways to reduce barriers and expand opportunities so more Washingtonians can reach higher levels of education. This study provides a long-term outlook at how community and technical college education will need to change and grow to meet the needs and expectations of future learners. Page four of the study states one challenge of which WVC is especially familiar: “To help more people attain higher levels of skill and knowledge as our state becomes more diverse, we need to attract, retain and succeed with more low-income youth, more Latinos, more under-educated adults, and more people who don’t live close to one of our campuses, especially those in central and southwest Washington. All of these groups are now less likely than others to get the education they need to thrive and to contribute to our prosperity.”

The mission study presents ten goals as part of a twenty-year action plan; including “Build a 21st century learning infrastructure” (#8). Indicators of need for higher education programs in WVC’s service area: Central/East region has 7.7% participation rate for college-level enrollment compared to 11.2% across the rest of the state (high is 14.4% in
Section 2.0 Primary Factors in Consideration

King County). The same pattern holds for English as a Second Language participation in the adult population. State average is 13.4%; Central/East is 7.9%. **Even without large increases in county population, there is still room for WVC to increase enrollment and access.**

The SBCTC Mission Study document is located at www.sbctc.ctc.edu/general/a_missionstudy.aspx.

2.3 Projected Growth of Programs (Academic Driver)

WVC’s programmatic focus is to expand opportunities for access to higher education, both on campus and for those who cannot come to a campus to attend class. WVC recently added two new professional/technical programs: a certificate in Digital Design (implemented 2011-12) and degree and certificate options in Aerospace Electronics (implemented 2012-13). Both are closely related to existing programs; Digital Design has significant overlap with studio art, and Aerospace Electronics is an extension of Industrial Electronics. The main focus is on expanding options in existing programs, such as articulating professional/technical degrees with four-year university programs to provide transfer options. Continuing Education and Adult Basic Skills enrollments are also projected to increase.

Another area of focus is to improve success rates for enrolled students through better placement mechanisms and review and adjustment of curriculum strategies and teaching practices. **These strategies will likely require more flexible spaces for learning and support activities and enhanced technology.** Per the strategic plan of the college, and discussions with the planning committee, the need for flexible spaces cannot be stressed enough. Students learn in different ways, whether in groups, alone, or one-on-one. Flexible spaces allow professors to adjust their content delivery methods; catering to different learning needs of the wide student demographic served by Wenatchee Valley College.

2.4 Repair And Replacement of Aging Facilities (Facility Driver)

After long years in service, it may be expected that major repairs will be required on campus buildings, especially to mechanical systems and equipment. Repair projects provide an opportunity to upgrade quality and efficiency where new technology is available. As a facility driver, repair and replacement of aging facilities present opportunities to improve the energy efficiency of the campus and lower high maintenance costs. Furthermore, the campus as a whole is not meeting the current energy code. In order to draw students to the College, these projects also have the potential to improve the image of the school.

WENATCHEE

According to the latest Facility Condition Survey (Appendix G), Wells Hall is past its useful life and should be replaced or renovated. Four other buildings are approaching this distinction, as well. These buildings are: Smith Gym, Gray House, Industrial Technologies, and Batjer. All possess a life expectancy of less than five years.

In 2013, Integrus Architecture conducted a building assessment on Wells and Sexton Halls. Included in Appendix F of this document, they provided an extensive evaluation of the function and physical condition of both buildings.

Wells Hall:

Integrus recommends the renovation of the ceramics/theater wing of Wells Hall; while demolishing and replacing the remainder. The building has a major safety issue, as the numerous renovations and additions have left the structure with a questionable lateral strength. Accessibility issues also make this building a safety and liability problem. The spinal configuration of Wells Hall makes it inflexible to future expansion needs. Also due to the addition of several wings, the mechanical systems are inefficient and costly. The building is constructed of brick veneer over concrete masonry units. The one inch rigid insulation does not provide an acceptable R value for efficiency. Window seals have popped and allow a large amount of air infiltration, which puts undue stress on the aging mechanical system. The Facility Condition Survey supports Integrus’ findings for Wells Hall. The Building Condition Rating Summary indicates that Wells should be replaced.

The image of the campus must also be considered. Faculty comments about the building include, “Wells Hall is non-functional”, “Wells Hall is an eyesore”, and “Wells Hall is very institutional...somewhat stale.” The replacement and
Section 2.0 Primary Factors in Consideration

partial renovation of this building is WVC Facilities' number one priority. Classes currently conducted in Wells would be temporarily relocated to portables during construction.

Sexton Hall:

There are many conclusive reasons to renovate Sexton Hall. The college needs additional flexible, and larger, spaces. This building will present one major obstacle to that goal: It possesses a rigid structural system that makes any reconfiguration difficult. Since its construction in 1967, renovations and additions have prolonged the life of this building, however inefficiently. In response to the questionnaire, one faculty member stated, “Sexton Hall is remodeled into a nonfunctional old and worn space.” The technology built into the building is grossly outdated. Updated technologies and systems are especially critical with the addition of distance learning opportunities and newer teaching techniques. Lastly, Sexton Hall receives higher student and faculty traffic as it is close to a main entry point to campus. The restroom facilities are difficult to clean and maintain; and too small for the traffic level. Integrus recommends a major renovation to this building in the six year master plan.

In summary, Wells and Sexton Halls need the most attention on this campus. With the inflexibility of both buildings' structural systems, they present a hindrance to the growing need of the campus for larger and more flexible classrooms. Wells Hall poses several safety and building envelope problems. These issues make it imperative that it be removed and replaced with a new facility. Sexton Hall is salvageable, which makes it a good candidate for renovation.

OMAK

The Omak campus is funded through Wenatchee Valley College, as it does not receive separate financial support from the State of Washington. As a result, the campus functions on a small budget; focusing on maintaining their existing structures, rather than building new. This is a point that should be focused upon. Omak has done a remarkable job of extending the life of their buildings; especially since the original campus facilities were not built to meet the program of higher education. The current facility condition survey recommends replacement or renovation for one-quarter of the buildings on this campus. The New Classroom Building and Omak College Foundation Office are the buildings under this category. Two other buildings, the Student Resource Center and WSU College Bound Office, are close; with a life expectancy of less than five years.

There are safety issues present that make it essential to replace the existing buildings. Respondents to the questionnaire had the following comments: suggestions for improvements included “a new building to replace our collections of beat-up old houses” and “more instructional space (something nice, no trailers)”. There are several freestanding structures on the Omak campus, as evidenced above. The students and faculty desire a unified campus with buildings that reflect the function of the property. Recommendations include: upgrade the classroom technology; update the appearance of the campus to reflect its purpose; improve the open space and landscaping; and add more classrooms.
Section 3.0

Assessment of Existing Conditions
Section 3.0
Assessment of Existing Conditions

3.0 ASSESSMENT OF EXISTING CONDITIONS (FACILITY DRIVER)

During the course of the Master Planning process a series of issues prevalent on both Wenatchee Valley College campuses were identified through a variety of meetings, studies, interviews, and tours. Recommended solutions to these issues form the basis for the initiatives presented in this document. The following sections outline the issues that will be addressed in the ‘Proposals for Future Campus Modifications’ portion of this document.

3.1 Existing Campus Site Plan, Property Boundaries, Adjacent Property Acquisitions

WENATCHEE

The existing Wenatchee Valley College campus has many positive elements. Most feel that the campus has a great deal of natural beauty inherent in its green spaces which should be preserved, and possibly expanded. The campus is spacious and buildings utilize approximately twenty percent of the land available on the current campus property; providing ample room for growth. The campus is currently limited on the north, a boundary defined by 9th Street. On the south, west and east; the campus’ official boundaries are 5th Street, Poplar Avenue and Ringold Street, respectively. It is the College’s long term goal to purchase the properties bound by these streets. Across 5th Street, to the south of campus, the college has acquired property with the intent of purchasing additional property in the near future. With the acquisition of all the properties mentioned above, the campus will grow by approximately twenty four percent.

Existing pedestrian pathways on the campus are numerous and vary in width (see ‘Existing Vehicular and Pedestrian Access’, next page); however, the campus circulation network does not appear to have a hierarchy in place. As a result, students frequently create various paths across campus.

Vehicle access to the interior of campus is limited. Parking at the perimeter is encouraged to minimize pedestrian and vehicular conflicts.

At the commencement of this process, Wenatchee Valley College did not have a campus design standard in place. The buildings are of varying styles, and this was cited as a concern to some respondents during the questionnaire process. It was also noted that classroom buildings are largely not accessible for a person with disabilities. The college is purposely moving toward a more cohesive, campus-wide design standard with recently completed buildings.

Central Green Space – Wenatchee Campus

OMAK

The existing Wenatchee Valley College-Omak campus has few positive elements. The buildings are maintained impeccably; however, they are old and outdated. The consensus among questionnaire respondents was that the classrooms are inadequate in technology and size. Most feel that the campus has a great deal of potential, especially
in its green spaces which should be preserved, and possibly expanded. The campus is small and buildings comprise approximately twenty eight percent of the land available on the current campus property; providing ample room for growth. The campus is currently limited on the north by Bartlett Avenue. On the south, west and east; the campus’ boundaries are West Apple Avenue, Birch Street and Ash Street, respectively. The original campus property consists of the west half of the block on the north side of West Apple Avenue. Over the years, WVC has accumulated properties bordering the south side of the same street. It is the College’s intent to purchase the property between the Heritage House and small parking lot on the south side of West Apple Avenue; and the property south of the WSU Upward Bound building. With the acquisition of the properties mentioned above, the campus will grow by approximately sixteen percent.

Existing pedestrian pathways on the campus are simply determined by the breezeways between existing buildings. There are two pedestrian access points: South of the Administration Building; and at the southwest corner of the north parking lot.

At the commencement of this process, Wenatchee Valley College-Omak did not have a campus design standard in place, as it has purchased and renovated existing buildings. Many of the buildings on campus are existing houses, and this was cited as a concern to some respondents during the questionnaire process. It was also noted that classroom buildings were too cramped, unsafe and not expressive of the pride students and faculty feel for WVC.

Native Plant Garden – Omak Campus

3.2 Classroom Utilization Analysis

A classroom utilization analysis was undertaken as a component of this Master Plan study. The task was to examine the operating efficiency of these spaces in order to determine if they are optimally utilized at present. This, of course, would require an estimate of the growth anticipated by the College, and a forecast of which areas of study would likely be in greatest demand, i.e. the trends in the future, both nationally and locally. The classroom utilization analysis also helped in determining whether classroom sizes are adequate, based on instructional practices at the College.

MAXIMUM CAPACITY OF CAMPUS

WENATCHEE

For purposes of the study, Integrus requested current data from the most recent quarter of heaviest enrollment, and was given the figures from the fall quarter 2011. These figures are shown in Appendix D. The College identified a list of 77 spaces on the campus representing all classrooms in current use. These classrooms are located in twelve different buildings on the campus, and support all the academic disciplines offered at WVC; although all were not necessarily offered in this representative quarter.
The classes ranged in size from 3 students to 60 students, with the average class size calculated to be 23 students. Together, these 77 classrooms contain 2,008 students. This represents the approximate maximum capacity of the current campus. Most institutions, including the public facilities of the State of Washington, recommend a more practical occupancy of 60%-67% of the maximum, as a guide for optimal classroom utilization. This allows students to more easily locate a seat, improves pre- and post- class circulation, and simplifies movement during classes. Using this 67% guideline, and the current count of 77 classrooms; the maximum capacity would decrease to 1,346 students with an average class size of 18 students.

OMAK

For purposes of the study, Integrus requested current data from the most recent quarter of heaviest enrollment, and was given the figures from the Fall Quarter 2013. These figures are shown in Appendix E. The College identified a list of 12 spaces on the campus representing all classrooms in current use. These classrooms are located in four different buildings on the campus, and support all the academic disciplines offered at WVC-Omak; although all were not necessarily offered in this representative quarter.

The classes ranged in size from 3 students to 30 students, with the average class size calculated to be 20 students. Together, these 12 classrooms contain an estimated total 240 students. This represents the approximate maximum capacity of the current campus. Most institutions, including the public facilities of the State of Washington, recommend a more practical occupancy of 60%-67% of the maximum, as a guide for optimal classroom utilization. This allows students to more easily locate a seat, improves pre- and post- class circulation, and simplifies movement during classes. Using this 67% guideline, and the current count of 12 classrooms, the maximum capacity would decrease to 161 students; with an average class size of 13 students.

CURRENT UTILIZATION EVALUATION

The study of numerical data associated with classroom use assists a reviewer in determining the trends present on a given campus. However, it should be noted that a purely numerical analysis tends to oversimplify the conclusions that can be drawn from a study as they do not take into account a variety of other factors which affect how many classrooms are actually needed on the Wenatchee Valley College campus.

Some of these factors include:

- Functionality of the existing classroom which may be affected by room size, scale, light quality, available technology, acoustics, etc.
- College policy on classroom size as opposed to the number of classrooms available that meet that policy
- Image and/or visibility requirements of a specific program on campus
- Needs associated with consolidated classrooms, offices, and support spaces within a singular building such as increased interaction between students, faculty, and staff
- Accreditation requirements
- Proximity and/or availability of classrooms for a particular program during scheduling
- Specific needs of a program within a classroom (flexibility, technology, etc.).
- Suitability of the existing classroom space. Some space might be better suited to an alternate use such as an office or support space, rather than renovating to update the classroom.

Once these factors are taken into account, a very different series of conclusions is evident from the analysis. The following points summarize the findings on the Wenatchee Valley College campus, and provide recommendations for increasing overall efficiency.
Section 3.0 Assessment of Existing Conditions

- Typical Classroom Size

WENATCHEE

For the Fall Quarter statistics examined, the maximum class size was 60 and the average class size, for 77 classrooms, was 23 students. The optimal capacity of a classroom designed for 23 students would be 35 seats. Currently, classes are filled based on the number of seats available; which suggests that the classrooms of the College are designed for smaller classes. There is some inefficiency inherent in their size. As such, campus wide efficiency could be increased if more classrooms were either renovated or constructed to accommodate 30-35 people.

The college may want to add more four-year degrees in the future. If so, lecture class sizes will need to increase to accommodate 35-40 students.

OMAK

For the Fall Quarter statistics examined, the maximum class size was 30. The average class size, for 12 classrooms, was 20 students. The optimal capacity of a classroom designed for 20 students would be 33 seats; which suggests that the classrooms of the College are designed for smaller classes. There is some inefficiency inherent in their size. As such, campus wide efficiency could be increased if more classrooms were either renovated or constructed to accommodate 30-35 people.

- Efficiency of Classroom Use

WENATCHEE

This analysis also showed that the minimum hours of weekly classroom use was 2, and the maximum usage was 71 hours; yielding an average of 28 hours of use per week. For comparison, the State of Washington recommends 30 hours per week for classrooms in its public institutions. It is clear that the College has accomplished the goal at its Wenatchee campus, as classes are being scheduled at maximum efficiency.

OMAK

This analysis also showed that the minimum hours of use of the classrooms was 12 hours per week, and the maximum hours of use was 46 hours per week, yielding an average of 31 hours of use per week. For comparison, the State of Washington recommends 30 hours per week for classrooms in its public institutions. It is clear that the College has accomplished the goal at its Omak campus.

- Functionality of Existing Classrooms

WENATCHEE

While the classrooms all are equipped with a variety of instructional media, ranging from low tech to high tech, updating some of the older classrooms is necessary. In the opinion of some of the faculty, technological improvements would be welcome. More classrooms are currently receiving distance education equipment. Others appear to be probable candidates for a general “facelift” which would increase efficiency by making the current spaces more usable. Retrofitting existing spaces with today’s technology is underway.

OMAK

Omak is in a similar situation as Wenatchee, in that updating some of the older classrooms would be desirable. One area needing technological and space upgrades is the ITV system. Providing distance education equipment to more classrooms is a natural conclusion, since this format is an essential resource offered at the Omak campus. As with the Wenatchee campus, Omak needs more flexible, and therefore usable, classrooms.
Section 3.0 Assessment of Existing Conditions

It should be noted that a program to renovate cannot bring all the classrooms on these two campuses up to today's standards. Many of the older buildings do not have enough infrastructure, so a combination of both renovation and the construction of new classrooms would be an appropriate solution.

FUTURE TRENDS AT WENATCHEE VALLEY COLLEGE

WENATCHEE

Based upon an average class size of 23, as determined above, it would seem that in the future the typical WVC classroom (lecture type) should be designed for 35 seats, unless a special need requires a larger capacity. Using the Fall Quarter statistics, the contact hours of classroom time were calculated to determine which disciplines utilized the classrooms most frequently. The result of this charting determined that the biggest ‘users’ were generally the programs with the largest enrollments. In descending order, beginning with highest use, these programs were: English, Mathematics, Art, Adult Basic Education, Biology, English as a Second Language, and Physical Education and Health. Forty seven other programs used a lesser number of contact hours (see Appendix D). English is located in Batjer Hall, Sexton Hall, Wells Hall, Eller-Fox Science Center and Wenatchi Hall. Wells Hall is the exclusive location for English as a Second Language. Eller-Fox Science Center and Wenatchi Hall, neighboring buildings, are the homes for the Mathematics program. Of note is the Continuing Education program at WVC, which accounts for a large number of enrollments. Depending on the subject matter, all the classroom buildings on campus share the Continuing Education courses.

OMAK

Based upon an average class size of 20, as determined above, it would seem that in the future the typical WVC classroom (lecture type) should be designed for 33 seats, unless a special need requires a larger capacity. Using the Fall Quarter statistics, the contact hours of classroom time were calculated to determine which disciplines utilized the classrooms most frequently. The result of this charting determined that the biggest ‘users’ were generally the programs with the largest enrollments. In descending order, beginning with highest use, these programs were: English, Mathematics, Biology, Early Childhood Education and Nursing. Twenty eight programs used a lesser number of contact hours (see Appendix E). The English program currently resides in the Classroom building. Mathematics is located in Friendship Hall and Classroom building. The Classroom Building is the exclusive location for Biology. Early Childhood Education is located in the Heritage House. Finally, Nursing is located in Friendship Hall.

3.3 Analysis of Programmatic Adjacencies on Campus

WENATCHEE

Programmatic adjacency refers to the deliberate practice of locating like functions in reasonably close proximity. This is considered good practice in the design of a single building, and is equally critical when looking at a college campus as a whole. Programmatic adjacencies on a college campus may be divided into academic and non-academic categories for ease of analysis. Academic adjacencies may be thought of as co-locating all facets of an instructional program within the smallest distance possible from each other so that they are not isolated and so that daily travel time to and from classes, meetings, etc. does not become a distracting factor. Non-academic adjacencies refer to the goal of co-locating like elements of a particular life function so that they may be accessed conveniently and efficiently. Examples might be co-locating all enrollment operations in a reasonably concentrated area, or providing necessary residence hall services (sleeping, dining, laundry, etc.) in the same vicinity.

On the Wenatchee campus, the college has effectively grouped the industrial technology, refrigeration, automotive, and agriculture labs with faculty and classrooms. Allied Health programs are grouped together to share support staff and biology labs. Liberal Arts faculty occupies many buildings and use classrooms and labs across the campus. The resulting ‘cross-pollination’ of science with the arts is desirable; but efficiencies, and transitions, for students could be achieved by bringing together developmental and college level faculty.
The Omak campus comprises a small area. It would be simple for the College to haphazardly scatter classes throughout all buildings. For the most part, however, WVC preserves the efficiency of grouping all classes from the same discipline into one building.

ACADEMIC ADJACENCIES FOR OPERATIONAL EFFICIENCY

Ideally, all instructional spaces (classrooms, laboratories, seminar rooms, etc.) and all administrative spaces (department offices, faculty offices, chairs, etc.) would be in a single building, or even a single wing of a larger, mixed use facility. Consideration must be given to sound generated by each function. Adjacencies with high noise levels should be grouped together, and shielded by distance or separation from other functions with lower noise levels. The ultimate goal is to achieve a critical mass and collegial synergy that results in peak performance and comfort for individuals as well as operational efficiency and resulting economy for the academic unit. However, on most campuses, classrooms become scattered and dispersed over time as class sizes change. Similarly, time conflicts develop which mandate finding suitable spaces on a “first available” basis. This has benefits, as it results in intermingling of disciplines, and an intellectual cross-pollination. In this respect, decentralization results in exposure to more diverse ideas, a particular strength of the modern university model; an approach encouraged and practiced by WVC.

NON-ACADEMIC ADJACENCIES FOR STUDENT/FACULTY/STAFF CONVENIENCE

Life functions for students, faculty, and staff can be simplified by thoughtful planning which focuses on logical arrangement of similar functions. Logical arrangement of locations can create/increase access to vital services while minimizing or eliminating obstacles. Travel time can be shortened and frustrations can be minimized by intelligent placement of facilities which must be utilized regularly. This results in an efficiency of life which is appreciated whenever it can be achieved.

DESIRABLE RELOCATIONS AND CO-LOCATIONS ON THE WVC CAMPUS

WENATCHEE

The following suggested relocations are recommended. Each has been listed with a brief explanation and planning rationale, based upon the assumption that better access and user/operational efficiency are desirable goals:

Program: English and English as a Second Language
Current Location: Batjer Hall, Sexton Hall, Wells Hall, Eller-Fox Science Center and Wenatchi Hall
Recommended New Location: New classroom building as replacement for Wells Hall
Rationale: The English and ESL classrooms are currently scattered amongst five different buildings. Wenatchee Valley College wishes to bring the two programs together under one roof. This would foster a collaborative atmosphere between the programs’ students and faculty.

Program: Industrial Technology
Current Location: Sexton Hall and Batjer Hall
Recommended New Location: New classroom building
Rationale: Sexton Hall houses many subjects in this ever-changing program. With the possible addition of brewing and viticulture, this program requires flexible spaces with specialized equipment. This move is one step toward better campus efficiency and usability for the faculty and students.

OMAK

Courses at Omak are frequently full, and there is limited support staff. Co-location is inevitable at this campus; however, easy access to staff could be improved.
SECTION 4.0

PROPOSALS FOR FUTURE CAMPUS MODIFICATION
PROPOSALS FOR FUTURE CAMPUS MODIFICATION

4.1 Ongoing Projects

WENATCHEE

Projects included in the “Ongoing” section are inherently difficult to tie to a specific timeline for a variety of reasons, including funding, outside influences, or other contributing factors. Nonetheless, these projects offer valuable opportunities for Wenatchee Valley College to either address specific issues or generally improve aspects of the campus. Where applicable, projects included in the “Ongoing” category are depicted in both the Six Year and Twelve Year Master Plan graphics.

IDENTIFY FUTURE USE REGIONS ON CAMPUS

This portion of the Facilities Master Plan is designed to assist the College to identify and reserve appropriate space for the placement of future buildings. Reserved spaces have been identified on both the six year and twelve year Master Plan graphics, denoted by a solid black boundary and unique color. The areas are divided into three basic types of regions: building (lavender), green space (green) and parking (grey). The types of use and their placement result from the information gained from the questionnaire and meetings during the Master Planning process.

CLEARLY DEFINE CAMPUS ENTRIES

City streets play an important role in defining the character of different parts of town, acting as landmarks, boundaries, and providing a pedestrian scale and atmosphere. Recently, special design treatment of key streets, such as 5th Street, has helped to encourage and maintain a visual cohesiveness in Wenatchee neighborhoods. By its nature, the improvement on 5th Street provides a boundary definition and thus an entry to the area (see Figure 4a). Currently, there are no clear entry and exit points along 5th Street to signal drivers that they are passing through the Wenatchee Valley College campus. While this concept might seem elementary, these visual cues let drivers know that there is something different about their environment. This difference in environment aides in an increased awareness of one’s surroundings that is desirable in a high traffic pedestrian area. A clear definition of entering and exiting Wenatchee Valley College could be achieved in a number of ways: bold identifying signage, unique and colorful landscaping, and a higher level of illumination to produce a more prominent lighting effect on campus.

ADDRESS ACCESSIBILITY OF CAMPUS GROUNDS AND EXISTING BUILDINGS

As various projects are undertaken across campus, accessible features should be incorporated into campus buildings and the surrounding environment wherever possible. Compliance with current accessibility codes is required on new construction projects and renovations once a project reaches a certain size/dollar estimate. Regardless of any mandates set forth by local code authorities, the accessibility of all campus buildings and grounds should be addressed to create a more welcoming environment for all to visit, study, and work. (See Section 5.0 “Campus Design Standards.”)
4.2 Six Year Campus Plan

The following table outlines the college’s six year development calendar, for the Wenatchee and Omak campuses; broken down by biennia.

<table>
<thead>
<tr>
<th>Project Notes</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Biennium</td>
</tr>
<tr>
<td>Wayfinding, Pedestrian Paths</td>
<td>2015-2017</td>
</tr>
<tr>
<td>Omak - SDC Remodel</td>
<td></td>
</tr>
<tr>
<td>Repairs/Roofing</td>
<td></td>
</tr>
<tr>
<td>Omak - Property Acquisition</td>
<td></td>
</tr>
<tr>
<td>Storage Building</td>
<td></td>
</tr>
<tr>
<td>Wells Hall</td>
<td></td>
</tr>
<tr>
<td>Property Acquisition</td>
<td></td>
</tr>
<tr>
<td>Parking Expansion</td>
<td></td>
</tr>
<tr>
<td>Omak - Administration Bldg.</td>
<td></td>
</tr>
<tr>
<td>Renovate & Expand Gym</td>
<td></td>
</tr>
<tr>
<td>Sexton Hall</td>
<td></td>
</tr>
<tr>
<td>Remove Old Dorms</td>
<td></td>
</tr>
<tr>
<td>Property Acquisition</td>
<td></td>
</tr>
<tr>
<td>Refrigeration - Industrial Tech.</td>
<td></td>
</tr>
</tbody>
</table>

WENATCHEE

Wenatchee Valley College contracted Integrus Architecture to perform building assessments on Wells and Sexton Halls. The purpose of the study was to evaluate, review, and document the existing deficient physical conditions for the buildings relative to life safety, building envelope, accessibility (ADA), structural systems, and mechanical/plumbing/electrical systems. The results were conclusive, and support the overall sentiment of employees and students of the college.

REPLACE WELLS HALL, PRESERVING THE CERAMICS/THEATER WING

Questionnaire respondents and the Wells Hall Building Assessment (see Appendix F) pinpointed the theater as desperately in need of repair and renovation. Integrus recommends the replacement of the building, preserving the ceramics/theater wing for renovation at a later date.

Replacement of Wells Hall is of utmost importance. Originally recommended in the 2003-2013 Master Plan, the need to replace Wells Hall was reiterated in the 2008 Master Plan Update. Facility condition survey from 2001 labeled the building as “needs improvement”. By 2007, the facilities condition survey labeled it as “needs replacement”. It goes without saying that this building is overdue for replacement, as the current facility condition survey (Appendix G) restates.

A new classroom building would replace the demolished portion of Wells Hall. WVC’s library is overcrowded with students who need informal spaces for individual and group study. As previously noted, larger classrooms are also critical to the success of the college. The most obvious reason to replace this building is its inflexibility to future needs of the college. Undocumented remodels have also resulted in a questionable lateral strength of the structure. In addition, there are accessibility issues and ineffective mechanical systems, and an inefficient building envelope. Attempting to remedy all of these items would be imprudent, compared to constructing a new building.
RENOVATE SEXTON HALL

The 2001 facilities condition survey labeled the building as “needs improvement”. By 2007, the facilities condition survey recommended replacement. Per the 2011 survey, Sexton received a score within the range denoted as “adequate”. Renovation of this building remains high on WVC’s priority list for the following reasons: Sexton has a rigid structural system which makes it difficult to accommodate larger, more flexible, classrooms needed by the college; despite the major renovation in 1999, when one quarter of the building was remodeled, the technology in this building is outdated; and, restrooms in this building are insufficiently small and difficult to maintain. Even with a renovation, it is doubtful that Sexton Hall can meet the functional and programmatic requirements of Wenatchee Valley College. Wells Hall is in greater need of replacement, as described above.

RENOVATE AND EXPAND SMITH GYMNASIUM

College employees, student body leaders, and community supporters are interested in updating and expanding fitness facilities on the Wenatchee campus. Smith Gymnasium was built in 1962, with an addition in 1990. Several respondents to the questionnaire cited quality of life issues as motives to focus on this facility. One response was, “Improve the PE facilities. We need to focus more on wellness, like the rest of the valley.” The 2008 Master Plan Update states the building is “inadequate in terms of support space.” Problems include the lack of adequate bleacher seating, an inaccessible weight training facility, and deteriorating plumbing and fixtures. The locker rooms are insufficient for student physical education programs as well as men’s and women’s teams sports.

CONSTRUCT A STORAGE FACILITY

The College expects to build a storage facility north of Batjer Hall in 2014, using local funds. The building will provide secure storage for shipping and receiving, paper stores, special-purpose vehicles, and various pieces of equipment. Space currently used for storage will be remodeled for a machinist and industrial technology laboratory.

UPDATE THE FACADES OF REFRIGERATION AND INDUSTRIAL TECHNOLOGY

The original campus maintenance facility, built in 1967, the Refrigeration building contains a lab for HVAC training. The building is too small for the program, and was recommended for replacement in the 2008 Master Plan Update. Until space is available to relocate the HVAC program, this building will undergo an exterior renovation to match the current campus aesthetic standard.

Built in 1951 for use as a bus garage; the Industrial Technology building has undergone subsequent renovations for uses including campus maintenance, welding classes, and currently industrial technology. The 2008 Master Plan Update stated this building “needs improvement through renovation”. As with the Refrigeration building, WVC intends to cosmetically renovate the façade of this building.

CONSTRUCT/RECONSTRUCT PEDESTRIAN PATHWAYS

Pedestrian pathways provide a circulation network for students, instructors, and visitors to traverse the campus on a daily basis. Ideally these paths are strategically placed to interact with key points on campus, thereby activating both the path and the attached space. As part of this system, it becomes important that visual cues are provided to establish a hierarchy within the pedestrian system on campus. This proposal outlines a system which is composed of two types of walkways for the Wenatchee Valley College campus: Pedestrian Axis - Primary, and Pedestrian Axis - Secondary. The establishment of this walkway system is largely based on routes already in place on campus. The goal of the system below is to provide a more defined hierarchy for the campus setting.

- **Primary Pedestrian Axes**

Primary pedestrian axes form the basis for the walkway system on the Wenatchee Valley College campus. As such, these pathways must be axial in nature to establish their position within the campus hierarchy. They should be the widest walkways (20’-24’) with their construction able to accommodate occasional service vehicles, as well as regular bicycle and foot traffic. These axes are likely to have the highest level of illumination, site furnishings, and landscaping when compared with other pedestrian pathways on the campus.
cross major streets such as 5th Street, it is critical that access points be clearly established with crosswalks, lighting, signage, etc.; as these points are expected to see the highest levels of activity. (See “Pedestrian Access Points” on Six Year and Twelve Year Master Plan graphics.)

- **Reconstruct/Construct Primary North-South Pedestrian Axis**

This axis begins at the bus stop/pull-out area along 5th Street (see Six Year Plan) and terminates at the parking lot north of Sexton Hall. The primary north-south axis follows the existing pedestrian path; jogging around the existing fountain in the campus courtyard.

- **Reconstruct/Construct East-West Pedestrian Axis**

Starting at Smith Gym and continuing east past the campus courtyard until it reaches the MAC; the primary east-west pedestrian axis connects a number of critical points on campus. This pathway carries pedestrians in a direct path between the gym and athletic fields, administrative functions, and existing and future classrooms; while tying in to the recently completed Music and Art Center.

- **Secondary Pedestrian Pathways**

Secondary pathways act as collectors, funneling pedestrians from minor pathways onto the primary north-south and east-west pedestrian axes of the campus. While not as wide (approximately 15’) as a pedestrian axis, secondary pathways are generous enough to accommodate both foot and bicycle traffic. Constructed of the same material as the primary pedestrian pathway, these walkways are axial in nature. Both construction and the linear quality of these paths help to provide visual cues to visitors that a hierarchy structure exists for the pathways on campus. (See “Pedestrian Axis” locations on Six Year and Twelve Year Plan graphics).

- **Construct an East-West Path for the North Side of Campus**

This new path would begin at the library, continue to the North portion of the primary pedestrian axis, and terminate north of Smith Gym. A node exists in front of the CWU Higher Education Center; where the primary north-south pedestrian axis crosses its path.

- **Construct/Reconstruct an East-West Path for the South Side of Campus**

Portions of this path already exist, radiating out from Wenatchi Hall. These paths should be extended past the south face of Smith Gym on the west, and to the new Music and Art Center to the east. Wenatchi Hall serves as a node for this axis. The pedestrian path, together with two legs of the primary pedestrian axis, would help create a natural boundary for the new replacement of Wells Hall.

ACQUIRE THE NATIONAL GUARD BUILDING

The National Guard building is located at the northwest corner of 5th and Ringold Streets. If the property becomes available, the college will purchase it; thereby reaching the campus limit at its southeast corner. The building could be used as additional fitness or athletic space, or storage for archives and equipment; freeing up space in the classroom buildings.

INSTALL CAMPUS SIGNAGE

Exterior wayfinding is a major issue on this campus. There are no directional signs along circulation routes denoting building or service locations. Locating directional signs, with a map of the campus, would be most desirable at the two pedestrian access points (See Six Year Plan graphic). Campus identity signage, along 9th and 5th Streets, would be advantageous to indicate that one is now entering the college district.
OTHER GENERAL ITEMS TO CONSIDER

- Easier access from the center of campus to the MAC and Wells House.
- Provide/preserve view corridors of Wells House for the community.
- A destination place on campus to encourage chance meetings for students and faculty.
- Bring the English and Social Sciences together in Wells replacement, with general classroom space. The English program is currently scattered between five buildings.
- Bring the developmental English and college level English professors together.
- Continue to acquire properties for expansion of the campus and subsequent parking.

OMAK

The six year campus plan is composed of a number of projects which address the image projected by Wenatchee Valley College-Omak to current and potential students, visitors, and the outside community. The strategies outlined in this section are based on a number of long term goals focused around potential for recruiting and interaction with other residents of Omak.

RENOVATE THE STUDENT RESOURCE CENTER

Located on the south side of West Apple Avenue, the Student Resource Center is where students can access educational support programs (see Figure 4b). These programs include free tutoring, worker retraining information, WorkFirst and financial aid assistance; as well as student clubs and organizations.

![Figure 4b – Student Resource Center](image)

RENOVATE THE ADMINISTRATION BUILDING

The admissions office for WVC-Omak is located in the Administration Building fronting on the north side of West Apple Avenue. The building also houses classroom space (see Appendix E for Omak room report). A renovation would improve functionality and accessibility.

UPDATE THE FAÇADES OF FRIENDSHIP HALL AND THE ADMINISTRATION BUILDING

As the College expands its frontage along the south side of West Apple Avenue, the existing buildings on the north side of the street have become the “front door” of the campus. As a building type, college campus buildings are unique in that they are usually approached from all sides. This requires the omission of so-called “rear” facades. Currently, visitors and new students driving to the campus, along West Apple Avenue, are presented with an uninviting “rear” façade (Figure 4c). Tasteful renovation will present an interesting and stylistically uniform façade along this main entry to the campus. Landscaping helps to beautify this frontage, and should be utilized in the future.
CONSTRUCT/RECONSTRUCT PEDESTRIAN PATHWAYS

As on the Wenatchee campus, pedestrian pathways on the Omak campus provide a circulation network for students, instructors, and visitors to traverse the campus on a daily basis. Ideally, these paths are strategically placed to interact with key points on campus; thereby activating both the path and the attached space. As part of this system, it becomes important that visual cues are provided to establish a hierarchy within the pedestrian system on campus. This proposal outlines a system which is composed of two types of walkways for the Wenatchee Valley College - Omak campus: Pedestrian Axis - Primary, and Pedestrian Axis - Secondary. The establishment of this walkway system is largely based on routes already in place on campus. The goal of the system below is to provide a more defined hierarchy for the campus setting.

- **Primary Pedestrian Axis**

 The primary pedestrian axis forms the basis for the walkway system on the Wenatchee Valley College - Omak campus. As such, it must be axial in nature to establish its position within the campus hierarchy. It should be the widest walkway (20’-24’) and able to accommodate regular bicycle and foot traffic. This spine is also likely to have the highest level of illumination, site furnishings, and landscaping when compared with other pedestrian pathways on the campus. Where the pedestrian spine crosses a major street, such as West Apple Avenue, it is critical that a “Collection Point” is clearly established. Crosswalks, lighting, signage, etc. should be utilized; as this point is expected to see the highest level of activity. (See “Pedestrian Axis” locations on Six Year and Twelve Year Master Plan graphics.)

- **Secondary Pedestrian Axis**

 Secondary axes act as collectors, funneling pedestrians from minor pathways onto the primary north-south axis of the campus. While not as wide as a primary pedestrian axis, secondary pathways are generous enough to accommodate both foot and bicycle traffic. Constructed of the same material as the primary pedestrian axis, these walkways are also axial in nature. Both construction and the linear quality of these paths help to provide visual cues to visitors that a hierarchy structure exists for the pathways on campus. (See “Pedestrian Axis” locations on Six Year and Twelve Year Plan graphics). The secondary axes currently run east-west between Friendship Hall and the Classroom Building; and north-south between the Administration Building and Friendship Hall.

ACQUIRE ADDITIONAL PROPERTY

The College wishes to own all the parcels fronting the south side of West Apple Avenue; across the street from the Administration Building. Acquisition of the property east of Heritage House will complete this goal. With the expansion of the college, additional parking will be necessary. As this parcel is located near the southern access point of campus, off-street parking would be located in this area.
Section 4.0 Proposals for Future Campus Modification

4.3 Twelve Year Campus Plan

The following table outlines the college’s twelve year development calendar, for the Wenatchee and Omak campuses; broken down by biennia.

FACILITIES DEVELOPMENT CALENDAR

<table>
<thead>
<tr>
<th>Biennium</th>
<th>Project</th>
<th>Category</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Omak - Campus Signage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parking Expansion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wells Wing #5 - Ceramics/Theater</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021-2023</td>
<td>Pedestrian Access</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Property Acquisition</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parking Expansion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2023-2025</td>
<td>Property Acquisition</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Batjer Hall</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WENATCHEE

The twelve year campus plan is composed of several projects to meet the college’s program needs as well as address the image projected by Wenatchee Valley College to current and potential students, visitors, and the outside community. As such, the strategies outlined in this section are based on a number of long term goals focused around potential for recruiting, interaction with other residents of Wenatchee, as well as strategically reorganizing parts of the Wenatchee campus.

RENOVATE WELLS HALL CERAMICS/THEATER WING

Part of the original building constructed in 1952; additions and remodeling of Wing 5 took place in 2002. As noted in the six year plan, the ceramics/theater wing (#5) is in dire need of repair. The building assessment for this portion of the building cites several code violations and safety issues, making it a prime candidate for renovation.

REPLACE BATJER HALL

Built in 1950, Batjer Hall is one of the oldest buildings on the Wenatchee campus. As such, it has endured many renovations and additions in response to changing program needs. Integrus recommends the replacement of this building for two reasons: First, the programs housed in Batjer are professional/technical in nature with curricula and equipment needs that change with the industries they serve. The building’s infrastructure cannot be efficiently modernized to support flexible learning spaces. The circulation and entry system of this building is convoluted and not accessible. Secondly, the building detracts from the central campus environment. Batjer Hall borders the northern edge of the central courtyard/greenspace, and should be a distinct stylistic landmark on campus. The replacement could frame the primary north-south pedestrian access while serving as a campus gateway.

ACQUIRE PROPERTIES FOR CAMPUS EXPANSION

The City of Wenatchee has an official campus boundary on record for WVC. This area is between 9th and 5th Streets on the north and south; and Ringold Street and Poplar Avenue on the east and west. The College would like to
Section 4.0 Proposals for Future Campus Modification

acquire those properties within this boundary that it does not already own. Wenatchee Valley College also owns, and would like to acquire, property south of campus across 5th Street.

CONSTRUCT ADDITIONAL PERIMETER PARKING

Campus expansion will create the need for additional parking. The National Guard property, in the southeast corner of campus, would make an efficient location for perimeter parking. The College does not yet own the property, but it is within the official boundary noted above. Another favorable location for new parking is in the northwest quadrant of campus. There is currently little parking in this area, and its presence will address higher parking demands of the growing campus.

EXTEND PEDESTRIAN AXES

With the expansion of the campus to the west; the secondary east-west axis across the southern portion of campus will become a primary axis from Wenatchi Hall westward. The expansion of campus to the northeast will drive the construction of a new primary axis; beginning near the new Wells Hall replacement.

IMPROVE LANDSCAPING AND EXPAND GREENSPACE

A campus landscape standard, as noted below, will help to create a favorable campus image for Wenatchee Valley College. The construction and expansion of pedestrian axes goes hand-in-hand with the landscaping, as they both tie the campus together. Landscaping will assist in tying old and new buildings and features together into a contiguous whole. Plantings and hardscape features will give the pedestrian axes an “avenue” feel; especially when paired with expanding the greenspace to include the area between Eller-Fox and Van Tassell. Utilizing sustainable water runoff management methods; and reducing water usage throughout the campus are continuing efforts at Wenatchee Valley College.

OMAK

Wenatchee Valley College-Omak has great potential to thrive as a satellite to the Wenatchee campus. Over the course of this study, several areas for improvement were brought to light. As evident in their responses to the questionnaire, the students and faculty expressed great pride in their school and a longing for a campus that reflected the great things happening at the Omak campus.

ACQUIRE PROPERTIES FOR CAMPUS EXPANSION

South of West Apple Avenue, the College owns a strip of land at the midway point of the east portion of the block. It would like to acquire the parcel to the north of this, south of the WSU Upward Bound building; thereby owning a continuous portion of land for use in future campus expansion.

CONSTRUCT A NEW FLEXIBLE LEARNING CENTER

This building will help frame a larger green space area located north of the Classroom Building. As noted in responses to the questionnaire, the campus is in dire need of additional classrooms. Currently, classes are spread out between several buildings, including retrofitted houses acquired by the college. Limited space drives the location for many classes, which are still too small to function well. As mentioned earlier, more distance learning ITV classrooms are needed; those already in service need current technology. The design and construction of this building will inform the future design standards of the campus, as it will be the first new building for WVC-Omak since the construction of Friendship Hall in 1985. Much thought and research should go into the design of this building, as it must reflect the pride and significance of the campus.

EXTEND PEDESTRIAN AXES

The primary north-south axis across campus will expand as the campus grows. A new pedestrian access point at Bartlett Avenue will mark the northernmost point of the primary pedestrian axis. This axis will continue south, across
Proposals for Future Campus Modification

West Apple Avenue, to the southernmost pedestrian access point at the midpoint of the block. A secondary pedestrian axis will tie the access point on Birch Street, through the greenspace, to the primary pedestrian axis.

IMPROVE LANDSCAPING AND EXPAND GREENSPACE

Landscaping and hardscape features should be utilized to differentiate this axis and tie it into the adjacent greenspaces. This will give the campus a softer, more hospitable atmosphere. A campus landscape standard, as noted below, will help to create a favorable campus image for Wenatchee Valley College-Omak. The construction and expansion of pedestrian axes goes hand-in-hand with the landscaping, as they both tie the campus together. Landscaping will assist in tying old and new buildings and features together into a contiguous whole. Plantings and hardscape features will give the pedestrian axes an “avenue” feel; especially when paired with expanding the greenspace to include the area between the Student Development Center and Friendship Hall.

INSTALL CAMPUS SIGNAGE

Exterior wayfinding is not a major issue on this small campus; however, it is recommended that the College develop a signage standard for both campuses. Directional signs, building names and classroom series numbers should be located adjacent to building entrances and exterior pedestrian routes. Wayfinding would also be augmented by locating a map of the campus at pedestrian access points (See Twelve Year Plan graphic). Campus identity signage, along West Apple and Bartlett Avenues, would be advantageous to indicate that one is now entering the college district.

4.4 Beyond Twelve Year Campus Plan

WENATCHEE

MODIFY CAMPUS LAYOUT

The westernmost end of campus, along Poplar Avenue, would be a logical location to relocate the athletic fields and tennis courts (see Beyond Twelve Year Plan). This will open up more area for future classroom buildings as they radiate from the center of campus.

RECONFIGURE THE CENTRAL GREENSPACE

To create an unambiguous pedestrian system on campus, direct routes are advantageous. With a new pedestrian access point north of Batjer Hall, one could continue straight through to the access point on 5th Street. Currently, the primary north-south axis is forced to jog around the existing fountain in the central greenspace. Reconfigure the greenspace to allow a continuous line of travel from one side of campus to the other.

4.5 Recommendations for Potential Property Acquisition

WENATCHEE

In the long term, WVC intends to demolish the National Guard building (see Figures 1 and 2), and create a campus parking lot, incorporating wide views to the historic Wells House from 5th and Ringold Streets. Interspersed planting areas will break up the expanse of the parking lot and provide filtered views into campus. Monument signage is recommended in this location to clearly define this campus entrance.
Currently, the college owns parcels at the SW corner of 5th Street and Elliott Avenue. A residence hall was erected on the property, and there is a need for additional housing. If the property to the west of the residence hall becomes available, the college will purchase it with the intent of expanding the student housing facility. The two parcels east of the residence hall, fronting Elliott Avenue, are also desired by the college for future campus expansion.

The property at the southeast corner of 9th Street and Poplar Avenue, continuing south along Poplar Avenue, is also desired by the college. It will complete the campus limit at the west end. The college would benefit greatly from the acquisition of this property, as it is another important entry point for the campus.

Lastly, the southwest corner at 9th and Ringold Streets would complete the northeast limit of the campus. Acquisition of this large parcel would enable the college to construct additional buildings in the future.
OMAK

As noted in the six year and twelve year plans, the College would like to acquire two properties adjacent to the campus.

The six year plan calls for the purchase of a small parcel east of the Heritage House (see the six year plan). Eventually, this property will be part of a new parking area on the southeast corner of West Apple Avenue and Birch Street (see the twelve year plan).

Future campus growth will be possible if the College can purchase a large parcel south of the WSU Upward Bound building; as indicated on the twelve year plan. This will complete the College’s ownership of the northeast quadrant of the block.
Section 5.0
CAMPUS DESIGN STANDARDS
5.0 CAMPUS DESIGN STANDARDS

Design guidelines describe the visual character of campus elements. To the extent that they are standardized, i.e. consistently and repetitively utilized, they help to unify the campus image. They are not intended to provide a rigid framework within which every design must conform. Rather, they are intended to identify some common threads which serve to tie divergent elements together in a common theme.

5.1 Facility Design Requirements

- Accessibility

All Wenatchee Valley College facility construction is required by code to conform to the access needs of disabled people. The disability may be physical conditions affecting mobility, incoordination, reaching and manipulation, stamina, sight, hearing, and/or speech. Designs should also be sensitive to emotional illnesses and mental disabilities, such as learning disorders.

Design projects, whether they are new construction or renovation, must conform to the Americans with Disabilities Act. Per current codes, they must also conform to the Washington State Building Code, WAC 51-50-1100, which consists of amendments to the 2012 International Building Code.

The American National Standard for Accessible and Usable Buildings and Facilities (ICC/ANSI A117.1-2009) has been adopted in the State of Washington and incorporated into the 2012 IBC. The purpose of the document is to offer standards that compliment the accessibility portion of the building code.

- Open Space

The jurisdictions for both college campuses regulate building height, construction, and clear space for fire safety reasons. These regulations shall be followed within campus property for every new building or addition. The college wishes to maintain a balance between a building's footprint and massing; and the open space cherished by students and faculty.

- Parking (Capacity, Policies, and Procedures)

In the future, it is recommended that a traffic study be conducted to analyze parking capacity and utilization of parking lots on both campuses. As part of the scope of this work, an overlay parking agreement with the City of Wenatchee should be negotiated; creating recommendations for future parking policies and procedures. While the parking requirements of the City of Omak are less rigid, parking design should conform to City expectations and neighborhood standards.

5.2 Construction Materials and Systems

- The classic description of materials required for the exterior construction of facilities for Wenatchee Valley College is that they should possess “firmness, commodity and delight.” That is, they must be strong and durable, economical (both first cost and low maintenance cost) and aesthetically appealing.

- To this description should be added that they must be “sustainable”. Materials meeting this description are “environmentally responsible,” ecology-conscious and “green” (rapidly renewable, energy efficient, recycled/recyclable, low VOC, near zero carbon footprint). The following materials all meet this description, to a greater or lesser extent, and are, therefore, highly recommended for consideration in the design of Wenatchee Valley College facilities:

 - Brick
 - Concrete, Cast-in-Place and Precast
 - Metal panel
 - Wood, FSC-certified
 - Glass, Clear without tinting
5.3 Security

- Lighting

 Height of Fixtures
 - Sidewalk Lights: Bollards, 42 in. high or Poles, 12 ft. high
 - Parking Areas: Poles, 25 ft. high
 - Designated Activity Areas: Poles, 12 ft. high (nominal)

 Illumination Levels
 - Security Lighting: 0.5 – 1.5 fc
 - Sidewalk Lighting: 0.1 – 0.2 fc
 - Building Entrances: 3.0 – 5.0 fc
 - Parking Areas: 0.2 – 0.5 fc

- Security Alarm Stations

 Personal security alarm stations are recommended for location at intervals around the campus, particularly in isolated areas. It may become a campus standard that every future facility construction project will have to provide one in a location designated by the College.

5.4 Hardscape

- Grade Changes

 Grade changes should be accomplished whenever possible by sloped walks or ramps conforming to accessibility code requirements. Where steps are required, they should have a broom finish or other non-slip finish on concrete steps, sloped slightly to drain. For comfort, follow the traditional rule of two times the riser height plus the tread depth equals 26 inches.

- Paving Materials

 Exterior walks should be a minimum of 6 ft. wide, gray concrete with a light broom finish. Where designated for major pedestrian circulation spines, special finishing, such as masonry pavers, should be used to distinguish them. Verify with the intended method of snow removal.

- Use of Outdoor Space

 The development and use of outdoor space is encouraged. Casual pedestrian use of the campus’ fountain area provides a very informal use. More development of courtyards and plazas, such as the area between Eller-Fox and Van Tassel, may be desirable. In addition, quiet student study areas and small group meeting areas provide additional value to any facility design and to the campus. At any time of day, these may be shaded or in direct sunlight. Both have an appeal at different times throughout the College’s school year.

5.5 Screening

- Dumpster Enclosures

 All dumpster enclosures must have adequate access. Consideration must be given to minimizing driveways while providing adequate turning radii for refuse vehicles. Dumpsters must be set on a concrete slab. A wall or fence, at a minimum of 6 feet high, is to be provided on three sides of the enclosure; and a gate is to be provided across the fourth.
Section 5.0 Campus Design Standards

- **Mechanical/Electrical Equipment**

 Wherever possible, mechanical and/or electrical equipment yards are to be fenced, minimum 6 feet high; if optimal air circulation is required and/or landscaping is to be provided as a visual screen.

- **Other Unsightly Building Elements**

 Provide suitable landscaping to visually screen the element(s). The height of the mature landscaping should be no less than the height of the tallest equipment.

5.6 Provision for Alternative Commuting Vehicles

- As energy resources become more expensive, alternative commuting vehicles will become more common. Bicycles, scooters, motorcycles and hybrid fuel vehicles of all kinds will likely need to be accommodated on the campus. Initially, compact cars will make up an increasing percentage of the parking needs. In many jurisdictions, compact cars are allocated at a maximum allowable percentage of the whole. The advantage is that compact cars typically have a reduced size parking space, thereby creating greater density and either saving property or parking more cars.

- Parking for bicycles, scooters and motorcycles should be provided as they grow in number. Covered parking may be used as an incentive to those who save energy by using these types of vehicles.

- Hybrid fuel vehicles have already been considered by Wenatchee Valley College with the installation of a charging station. Most questionnaire respondents were unaware of the presence of the charging station, but would use the station if they owned an electric vehicle. With the future increase of such vehicles, it may be advantageous to provide additional stations on campus. Consideration should be given to the ramifications that this may present to the campus, such as additional utility requirements. There is a LEED credit for the accommodation of low-emission and fuel efficient vehicles.

- Provision of bicycle storage racks or lockers and changing rooms for riders are considered sustainable design and provide a LEED credit when the College desires to certify a building project.

5.7 Landscaping

- **Planting**

 In the future, the College may utilize native plants in its landscape. Those which are considered to be drought tolerant will minimize maintenance and ensure that plants are hardy.

- **Irrigation Systems**

 Drought tolerant plants should require little or no watering. Where other plantings occur, the College may prefer a drip irrigation system to minimize waste and to meet sustainability goals.

5.8 Identifying Elements

- **Signage**

 An exterior signage and way finding plan should be developed for the College. This document should be referenced for specific type, construction, and placement of signage within the campus landscape.
WVC Master Plan Questionnaire

There were 68 respondents to the questionnaire.

Purpose:
Wenatchee Valley College is currently in the process of updating our Facilities Master Plan. To aid us in this effort, we would like to know your personal visions regarding the campus.

This survey consists of 40 questions. Please answer as many questions as you can, but do not feel obligated to answer all.

Information about you:

1. At which campus do you attend/teach?

 Wenatchee - 51 respondents, or 76%
 Omak - 13 respondents, or 19%
 Both campuses - 3 respondents, or 5%

2. How long have you been at WVC?

 Wenatchee:
 Students – average 1.9 years
 Employees – average 9.7 years

 Omak:
 Students – average 1.7 years
 Employees – average 12.6 years

3. What is your age?

 Wenatchee:
 Students – average 20 years
 Employees – average 49 years

 Omak:
 Students – average 24 years
 Employees – average 53 years

4. Are you a student or employee at Wenatchee Valley College?

 Wenatchee:
 Students – 7 respondents
 Employees – 47 respondents

 Omak:
 Students – 3 respondents
 Employees – 10 respondents
Employee Status:

5. If you are an employee, what is your status?

- **Wenatchee:**
 - Faculty – 17
 - Classified – 11
 - Exempt – 18
 - Volunteer – 1

- **Omak:**
 - Faculty – 7
 - Classified – 4
 - Exempt – 0

Facilities Master Plan – Product and Process:

6. What do you think should be the primary goals of the Master Plan?

 Enhance learning environment for students and the working environment for employees; make the campus more usable and safe; express campus pride and student recruitment; improve technology.

7. What should be the product(s) of the Master Plan when it is complete?

 A guide for future projects that serve the mission of the college; prioritized list for building replacements; establish schedules and capital budget plans; a clear vision/map with existing and proposed uses.

Entrance and Impressions:

8. Where are the main entrances to the campus?

 - **Wenatchee:** 9th Street at the Sexton parking lot, and lot behind Brown Library. 5th Street at Wenatchi Hall, and near Smith Gym; neither campus has a well defined entrance.

 - **Omak:** North parking lot; Apple Avenue to the south; Administration Building.

9. Should the entrances to the campus be better identified, or should the campus blend into the surrounding neighborhoods?

 Both campuses: Entrances should be better identified, in conjunction with signage to guide visitors to the correct building.

10. What do you think are a visitor’s first impressions of the campus? Is the first impression correct?

 - **Wenatchee:** Some confusion of where to go; ticketing visitors who need more than 30 minutes to do business with us is a horrible first impression; institution, old: We are much more exciting than the first impression tells; beautiful campus with the fountain and lawns.

 - **Omak:** Visually underwhelming, and yet a lot of great things are happening here; small and inadequate; old and dated.
Campus Environment:

11. What do you like about the current campus? What should be kept (at all costs)?

 Wenatchee: Open feel of the campus, with perimeter parking; the fountain as the centerpiece; Wells House; trees and landscaping; green spaces; newer buildings, MAC and Wenatchi Hall; outside tables; places for people to congregate; home town feel, inviting.

 Omak: Green spaces and art; intimate places to gather outside; the native plant garden and greenhouse.

12. What are the current weaknesses of this campus? Ask yourself “what have we been doing without,” “what just isn’t quite right,” “what is my pet peeve,” about the campus.

 Wenatchee: Outdated gymnasium and fitness facilities; limited parking; bathrooms in Eller-Fox and Sexton Halls; Wells Hall, Sexton Hall and Batjer Hall are worn out and not functional; insufficient furniture at campus focal points; insufficient site lighting; lack of campus emergency infrastructure, with phone stations and strobes indicating and ongoing emergency; some areas not accessible; no casual seating, with TV programs or news; no healthy food options on campus; the Wells Hall theater is in bad shape, with leaking roof; not enough large common areas for meetings; very little multi-purpose space; lack of consistent signage directing students and visitors.

 Omak: Lack of accommodations for mothers; not enough classrooms and insufficient space for larger classes; no student lounge area; library is not large enough; inadequate staff offices; lack of art and performance areas; limited outdoor gathering space; not enough ITV spaces; tutoring center is too small and outdated; parking lot across the street is too far to walk; Student Resource Center and Administration Building are old and moldy; hallways are too narrow and unsafe; Slow wifi access throughout campus.

13. What improvements do you suggest for the campus?

 Wenatchee: A new Student Activities Center; new, less-institutional looking water feature; more shaded casual seating; smaller fountain; improve the PE/fitness facilities; replacement of Wells, Sexton, Batjer, Refrigeration and Eller-Fox; cleaner look of buildings facing 9th Street; better facades of buildings, particularly the front of the gym and south side of Van Tassel; more group study space; more space for extracurricular activities; Better kiosks/campus maps, with names of buildings and a short description of the departments; a veteran's memorial with seating; renovate the theater in Wells Hall; Create a large meeting area for conferences and large gatherings; more dormitories; better campus lighting; smoother, more accessible, walkways with rails where appropriate, like upper ramp to the gym; walkways that reflect actual foot traffic; renovate bathrooms in several buildings; show campus pride.

 Omak: Better parking; a new building to replace the old houses currently in use; more instructional spaces; a large presentation/performance room; a student lounge; a book store and a cafeteria; a larger library; better wifi access; an outdoor gathering space.

14. What do you consider the center, or focal point, of the campus?

 Wenatchee: Fountain; Wenatchi Hall; Van Tassell; the Library clock.

 Omak: Not sure if there is a center; the small grassy area, by the mural, between the Administration and Library buildings; Student Resource Center; Friendship Hall.
15. If you could change the focal point of the campus, what would it be, and why?

Wenatchee: A learning center, that’s why we’re here; Wenatchi Hall, because it is the main building; I wouldn’t change the focal point, water draws and soothes people – perfect as a central focus; keep the fountain area, but add shaded seating; enhance the fountain area with more seating options and a shaded pavilion; possibly install a second fountain between Eller-Fox and Van Tassell; Wells Hall replacement should be the hub of activity, I think of a focal point as one for visitors, student activity, alumni; Van Tassell, has a gathering space but it is too small.

Omak: Abandon Apple Avenue and create a courtyard, because there are WVC-owned buildings across the street from the Administration building and there should be no cars driving through the campus; abandon Apple Avenue and build a facility for presentations and health care training; a student center should be the focal point, all students could gather there; keep the native plant garden and expand it; create a focal point, as there is none.

16. Are there adequate facilities for campus life? Think athletic/fitness, library (increasing or decreasing in size), food service production and dining, residential housing, spiritual and social.

Wenatchee:
Yes – 20 respondents, or 45%
No – 24 respondents, or 55%

Omak:
Yes – 2 respondents, or 13%
No – 13 respondents, or 87%

17. If you answered “no”, what is missing or inadequate?

Wenatchee: Student social and activity area; lack of display cases, and means to post events/test areas in a professional manner; need a “WVC Home of the Knights” sign at the entrance; more affordable, and better quality, food service; cafeteria that is open in the evenings and during the summer quarter; need coffee kiosks; need more places for students to gather in small groups, study, work with technology, or work with a tutor; a multi-purpose room for meetings/classes; need a large indoor area for gatherings; the gym/recreational space is inadequate; locker facilities, weight room, and a place for yoga/pilates; writing lab is too small; need an employee parking lot; break rooms for faculty; clearly marked social vs. study areas; nothing spiritual here that I know of.

Omak: No food service is available; need athletic center/fitness spaces; more study areas; better parking; need a large meeting space; Library and associated technology should be enlarged; limited spiritual and social opportunities; no space for the arts; inadequate staff lounge and staff offices; not enough teaching space; need a student lounge; not enough group work classrooms; nursing lab is too small; need a book store; large space/hall for use by the community.

Circulation:

18. Do you regard vehicular and pedestrian traffic equally important?

Wenatchee:
Yes – 19 respondents, or 86%
No – 3 respondents, or 14%

Omak:
Yes – 7 respondents, or 54%
No – 6 respondents, or 46%

19. Should vehicular or pedestrian traffic be reduced or emphasized?
19. Should vehicular or pedestrian traffic be reduced or emphasized?

Wenatchee:
- Reduced vehicular traffic – 8 respondents, or 44%
- Emphasized vehicular traffic – 10 respondents, or 56%
- Reduced pedestrian traffic – 1 respondent, or 5%
- Emphasized pedestrian traffic – 18 respondents, or 95%

Omak:
- Reduced vehicular traffic – 5 respondents, or 50%
- Emphasized vehicular traffic – 5 respondents, or 50%
- Reduced pedestrian traffic – 1 respondent, or 10%
- Emphasized pedestrian traffic – 9 respondents, or 90%

20. Is the number of parking stalls adequate?

Wenatchee:
- Yes – 7 respondents, or 28%
- No – 18 respondents, or 72%

Omak:
- Yes – 7 respondents, or 54%
- No – 6 respondents, or 46%

21. Are parking lots located conveniently?

Wenatchee:
- Yes – 15 respondents, or 62%
- No – 9 respondents, or 38%

Omak:
- Yes – 10 respondents, or 83%
- No – 2 respondents, or 17%

22. Should a parking structure be desired to minimize “parking lot sprawl”?

Wenatchee:
- Yes – 14 respondents, or 61%
- No – 9 respondents, or 39%

Omak:
- Yes – 2 respondents, or 17%
- No – 10 respondents, or 83%

23. What are the major pedestrian axes (corridors or routes) on campus?

Wenatchee: 5th and 9th Street crossing; interior mostly and by the bus stops; across campus from 5th to 9th; 5th Street, Sexton, gym parking; Across 5th from the dorms; from parking at the National Guard building; between buildings, converging in the fountain area; paths radiating from Van Tassel, Wenatchi Hall, Sexton and the Library; Plaza fountain, parking lots, sidewalks in front of the gym, and 9th Street through Sexton; Radiating from Wenatchi Hall; Sexton to Wenatchi, Wenatchi to Brown Library and Wells Hall, Wenatchi to Van Tassell to Gym; 5th street.

Omak: Between building walkways, sidewalks bordering the campus, crossing Apple Avenue; Apple and Birch Streets.
24. Should the pedestrian routes be protected, changed, improved, or closed?

Wenatchee:
- Protected – 6 respondents, or 38%
- Changed – 3 respondents, or 18%: locate walkways in easy paths; need more diagonal walkways, especially outside Wenatchi and Eller-Fox; follow foot paths students have made.
- Improved – 7 respondents, or 44%: wider sidewalks; add lighting; add flashing lights on 5th; remove trees in the center of 5th Street, so we can see the people crossing.
- Closed – 0 respondents

Omak:
- Protected – 1 respondent, or 25%
- Changed – 2 respondents, or 50%: Apple Ave should be closed for one block; if the road in front of the Administration building is not closed, there should be a crosswalk instead.
- Improved – 1 respondent, or 25%
- Closed – 0 respondents

25. Is there interest in developing/encouraging alternate forms of commuter transportation, e.g. city bus service?

Wenatchee:
- Yes – 15 respondents, or 63%
- No – 9 respondents, or 37%

Omak:
- Yes – 8 respondents, or 17%
- No – 4 respondents, or 83%

Density and Green Space:

26. How important is green space on campus (very important, somewhat important, not important)?

Wenatchee:
- Very Important – 14 respondents, or 58%
- Somewhat Important – 8 respondents, or 34%
- Not Important – 2 respondents, or 8%

Omak:
- Very Important – 3 respondents, or 38%
- Somewhat Important – 3 respondents, or 38%
- Not Important – 2 respondents, or 24%

27. Could/should the green space be better utilized?

Wenatchee:
- Yes – 16 respondents, or 70%
- No – 7 respondents, or 30%

Omak:
- Yes – 9 respondents, or 75%
- No – 3 respondents, or 25%

28. Is there too much green space?

Wenatchee:
- Yes – 2 respondents, or 8%
- No – 23 respondents, or 92%

Omak:
- Yes – 1 respondents, or 8%
- No – 12 respondents, or 92%
29. Should campus density (spacing between buildings) be: (left the same, decreased by spreading out new facilities, increased)?

Wenatchee:
- Left the Same – 20 respondents, or 84%
- Decreased – 2 respondents, or 8%
- Increased – 2 respondents, or 8%

Omak:
- Left the Same – 6 respondents, or 55%
- Decreased – 4 respondents, or 36%
- Increased – 1 respondents, or 9%

Safety and Security:

30. Are there any major safety issues that need correction?

Wenatchee:
- Add site lighting, especially needed in winter; tripping hazards, with uneven sidewalk seams; need safety signage at the fountain, so people won’t walk on the edge; parking lot on 5th needs stop signs, five different directions merge into one area; better, well-lit crosswalks are needed; no way to secure the classroom door in the event of campus violence; an outdoor system to visually warn students and staff of an emergency situation on campus; remove the center trees from 5th Street and put in crosswalk lines, with lights, so we can see pedestrians.

Omak:
- Only one door is currently provided to nearly every classroom; the buildings that are converted homes do not have institutional safety measures in place; internal door locks are needed; bars on basement windows should be removed, as there is only one door out of the basement; antiquated fire alarm and communication system throughout campus; Student Resource Center is unsafe and smells of mold; the only way to get to the SRC and Administration building is across a street with no crosswalk.

31. Security:
 a. Are there any security concerns?

 Wenatchee:
 - Yes – 14 respondents, or 64%
 - No – 8 respondents, or 36%

 Omak:
 - Yes – 9 respondents, or 75%
 - No – 3 respondents, or 25%

 b. Is there a need for better security on campus?

 Wenatchee:
 - Yes – 10 respondents, or 48%
 - No – 11 respondents, or 52%

 Omak:
 - Yes – 8 respondents, or 67%
 - No – 4 respondents, or 32%
c. Do pedestrian or parking areas need better lighting at night?

Wenatchee:
- Yes – 18 respondents, or 82%
- No – 4 respondents, or 18%

Omak:
- Yes – 10 respondents, or 83%
- No – 2 respondents, or 17%

d. Does the landscaping pose any concerns from the standpoint of personal safety?

Wenatchee:
- Yes – 3 respondents, or 14%
- No – 18 respondents, or 86%

Omak:
- Yes – 1 respondent, or 9%
- No – 10 respondents, or 91%

e. Are emergency alarm stations warranted?

Wenatchee:
- Yes – 13 respondents, or 65%
- No – 7 respondents, or 35%

Omak:
- Yes – 6 respondents, or 60%
- No – 4 respondents, or 40%

Sustainability:

32. To what degree should sustainable design ("green" design principles) be a part of future building design?

Wenatchee: Important; Green design principles should be a part of design; big!; great extent!; imperative; to a high degree; zero; they should be a major part of future building design; minimal; the college needs to make a statement on the importance of going green – we should be an example to the community; as long as “green” does not interfere with the actual intent and purpose of the building; low priority.

Omak: Solar panels on the roof would be a great idea; an important element, part of our educational mission; it should be encouraged; they should always be part of the design; large degree; moderate.

33. There are currently recharge stations for electric vehicles on campus. Do you use them?

Wenatchee:
- Yes – 3 respondents, or 13%
- No/Not yet – 21 respondents, or 87%

Omak: Not available on this campus.

34. Should we envision other types of amenities for campus that encourage sustainability? If so, what?

Wenatchee: Updated HVAC systems; operable windows; user-operated shades in passive solar areas; recycle water used to maintain landscaping; utilize xeriscaping; shaded outdoor seating, with power; less/more focused watering, smaller fountain, more water re-fill stations; community garden; expand recycling; lower flow water fixtures; native plants; solar or wind energy capture; reduce the use of plastic water bottles; more solar energy; use green lighting, instead of fluorescents; more
solar panels; more recycle bins on the grounds; recycling across campus; solar powered signage, wind powered devices to power industrial tech or automotive environments.

Omak: Solar panels; composting and increased recycling.

Building Needs:

35. In order, what are the greatest building needs? (Ranked 1 as most important, 2, or 3.)

a. New construction
 Wenatchee: 3 ranked this as most important, or 38%
 Omak: 3 ranked this as most important, or 42%

b. Renovation of Existing Buildings
 Wenatchee: 2 ranked this as most important, or 24%
 Omak: 2 ranked this as most important, or 29%

c. Technology Upgrades
 Wenatchee: 3 ranked this as most important, or 38%
 Omak: 2 ranked this as most important, or 29%

36. In your opinion, what building has the greatest need in each category?

a. New Construction
 Wenatchee: Wells (15); Batjer (3); Gymnasium (3); Library; Sexton; social sciences/humanities.
 Omak: Classrooms (3); Student Resource Center (3); Nursing (2); distance learning; performance space.

b. Renovation of Existing Buildings
 Wenatchee: Sexton (8); Gymnasium (6); Wells (5); Batjer (4); Library (2).
 Omak: Administration building (5); Student Resource Center (4); Heritage House; Library; distance learning.

c. Technology Upgrades
 Wenatchee: Whole campus (8); Wells (3); Sexton (2); Batjer; Brown Library; computer classrooms; Van Tassell.
 Omak: ITV (3); whole campus (2); classrooms; computer labs; science lab.

Enrollment & Classroom Usage:

37. Should enrollment be limited to a certain number of students to maintain the same high quality of education, class sizes, and amenities; or should there be no limit imposed?

 Wenatchee: No limit, we should grow with the demand (17); Yes, limit to maintain quality (10); open enrollment should be seriously reconsidered (2); same is fine.

 Omak: No limit, we should grow with the demand (9).
38. What is the optimal student/faculty ratio for each department to achieve? Is this a factor for students selecting the college?

 Wenatchee: Depends on the class/program (5); 25/1 (4); 20/1 or lower, should include online classes (3); 24/1 (3); 30/1 (3); 10/1; 15/1; 50/1; current ratio is fine; keep student ratio down.

 Omak: Depends on the class/program (2); 15/1; 20/1; 25/1.

39. For each of the current “general use” classrooms, is there a predominant/majority user?

 Wenatchee: Yes (7); no (2); they need to be scheduled better.

 Omak: Yes (2); transfer education; yes for 20X, no for 30X.

40. What is the desired efficiency of the “general use” classrooms (i.e., 80% of the time utilized, or what other percentage)?

 Wenatchee: 80% (7); 50% or more (2); 90% (2); as close to 100% as possible (2); at least 60%; 70-80%; 75%; flexibility is slightly more important than usage.

 Omak: 80% (2); 90% (2).

Thank you!
Thank you for taking the time to respond to this survey.
Reimagine instructional space and infrastructure to best support teaching and learning in all areas of the institution.

- As fundamental assumptions about time and space for learning change, provide relevant services, staffing, and tools to support student success through teaching, learning, student development, and other resources
- Replace or remodel college facilities to enable best practices in instructional design and student support
- Provide learning support and student support in all learning environments inside and outside the classroom
- Create and support professional development opportunities that engage faculty and staff in new and creative approaches to teaching and student services
- Provide teaching support that sustains college-wide adoption of new strategies and tools

Expand WVC’s commitment to continuous improvement by increasing the availability and use of data for decision-making with a focus on meaningful outcomes and student success.

- Integrate data and information across all areas of the college
- Improve capacity to capture, access, and use data to improve transitions, progress, and completions for student success.
- Collect, publish, and utilize data from across the college to assure mission fulfillment and attainment of core themes and student learning outcomes
- Support implementation of the ctcLink integrated data system with local enhancements that meet WVC’s needs

Commit to a college-wide effort to engage students and personalize interactions for a positive and individualized student experience.

- Distinguish WVC by providing an outstanding student experience that draws students to the college and retains them
- Use tools and technology to coordinate information for personalized interactions
- Develop systems for student support and academic advising for all students from initial entry through transitions and completion
- Develop models for integrating competency-based learning and prior experience into academic and career pathways and student advising
- Provide professional development and training resources that support an individualized, responsive college climate

Approved by the WVC Board of Trustees, February 20, 2013
APPENDIX C

EXCERPTS FROM THE CITY OF WENATCHEE

COMPREHENSIVE PLAN
Wenatchee Urban Area Comprehensive Plan

Plan Adopted April 26, 2007

Amended September 11, 2008 - Ordinance 2008-25
Amended September 24, 2009 – Resolution 2009-56
Amended September 9, 2010 – Resolution 2010-51
Amended December 9, 2010 – Resolution 2010-72 (Capital Facilities Plan)
Amended September 1, 2011 – Resolution 2011-60
Amended December 1, 2011 – Resolution 2011-72 (Capital Facilities Plan)

Mayor and City Council
Dennis Johnson, Mayor
Jim Bailey
James “Tony” Veeder
Karen Rutherford
Doug Miller
Mark Kulaas
Don Gurnard
Carolyn Case

Planning Commission
Randy Asplund, Chair
Karle Rolen
Jay Bollinger
Larry Riegert
Jean Speidel
Scott Griffith
Doug Merrill

City Staff
Allison Williams, Executive Services Director
Steve King, Interim Community Development Director
Monica Libbey, Planning Manager
Brian Frampton, Associate Planner
John Ajax, Associate Planner
INTRODUCTION

The City of Wenatchee is required to maintain an up-to-date comprehensive plan in accordance with the Washington State Growth Management Act. The last major plan effort occurred in 1988, with an update to Growth Management standards in 1993.

Much has changed in the ensuing time period. The city has continued to see steady population and commercial growth. Growth has spread out to the logical geographic boundaries of the city, including the foothills to the west and the rivers to the east and north.

Wenatchee is facing some tough decisions on how to accommodate growth while protecting the quality of life. Land use, housing, transportation and public facilities and services are all critical to the development of Wenatchee.

COMPREHENSIVE PLAN VISION

By working to create a “vision” for life in Wenatchee in the year 2025, citizens are given an opportunity to help shape their community’s future. The vision is the guide for development of the Comprehensive Plan and helps shape the Goals and Policies therein.

Based upon the views expressed by local residents during the early stages of public involvement, Wenatchee’s vision focuses on three, interconnected, subjects considered to be the most important determinants in Wenatchee’s future: Economic Development, Quality of Life, and Learning and Human Services.

Economic Development

Residents envision Wenatchee 2025 to have a robust, diverse, and sustainable economy. By improving transportation and the physical infrastructure of the City, Wenatchee’s retail districts, such as Downtown, will have grown in quality and range of services. Increased riverfront development and recreation, combined with regional partnerships, inspire a unique identity for the City.

Quality of Life

Throughout the next 20 years, Wenatchee’s neighborhoods will become increasingly attractive and affordable for everyone. By creating a comprehensive system of pedestrian and bicycle trails, residents enjoy convenient access to services, open spaces, playfields, and parks. This vision is based on a direct correlation between the surrounding natural beauty and environmental quality and the community’s quality of life.

Learning and Human Services

In 2025, residents see Wenatchee as the home to an array of high quality educational institutions that meet the community’s and the region’s needs. In addition to educational facilities, maintaining high-caliber medical facilities and crime prevention services are also seen as essential to supporting economic vitality and a high quality of life.
south/east towards Malaga and Mission Ridge.

OLDS STATION AND SUNNYSLOPE

The interim Sunnyslope Urban Growth Area is estimated to accommodate 2,370 housing units at a density of over 6 units per acre. Lower densities, based upon current development patterns, will reduce the housing potential of Sunnyslope. The Olds Station area includes land and buildings for industrial and other economic development opportunities.

Planning for the Sunnyslope and Olds Station area is led by Chelan County and a sub-area plan will be incorporated into the city’s comprehensive plan. The city has a couple of clear interests in the area, such as:

1. Ensuring that the projected number of housing units can be accommodated through land use and infrastructure plans.
2. Providing strategies for the extension of sanitary sewer that will be provided by the city.
3. Ensuring that level of service standards for public facilities and services in the area are consistent with city standards.
4. Ensuring that industrial land uses are protected in the area.
5. Coordinating development with traffic impacts on North Wenatchee Avenue.

ARTERIAL CORRIDORS

Arterial corridors, such as Wenatchee Avenue, 5th Street and Western Avenue, are the linking elements of the City. They provide mobility to citizens between and within districts. Corridors provide connections between different areas and destinations within Wenatchee, as well as to places beyond. These corridors carry the largest volume of traffic.

There are two types of corridors: commercial corridors and residential corridors. In commercial areas along such corridors, the development has been predominately auto-oriented. Where these arterials bisect traditionally residential areas, many non-residential uses, such as schools, churches, public facilities and some businesses have already located.

Land uses along these Corridors should consider the following:

1. Circulation. Any land use should minimize impacts to circulation by combining access points, providing turn pockets, and ensuring safety.
2. Non-residential. The corridors that bisect residential neighborhoods provide visibility for non-residential uses (e.g. churches, small businesses and schools) and are usually compatible with adjacent uses.
3. High Density Residential. Town homes and multi-family could be considered a compatible land use in residential neighborhoods along these corridors.
4. Pedestrian Scale. Strategies to reduce the clutter and auto-orientation of commercial corridors should be pursued.
Policy 3: Provide opportunities for light manufacturing and flexible space, such as foundries and welding, within some of Wenatchee’s commercial districts.

DOWNTOWN – Strengthen the vitality of downtown.

Policy 1: Promote activity at the street level through appropriate uses in buildings, art and street amenities, and encourage offices and residential development in upper floors.

Policy 2: Promote expansion of the downtown and connection with adjacent districts, such as the waterfront and courthouse.

Policy 3: Provide infill opportunities and retail market support by encouraging residential development downtown.

WATERFRONT -- Encourage positive redevelopment that enhances the community’s most precious resource – its waterfront.

Policy 1: Create a series of development nodes or focal points along the waterfront – each with a different type of setting, different mix of land uses, design emphasis, and park improvements.

Policy 2: Provide a variety of housing types on the waterfront to increase pedestrian activity and vitality, increase the market for area businesses, and accommodate a significant share of the city’s projected population growth.

Policy 3: Encourage office uses on the waterfront as a secondary use.

Policy 4: Maintain viable industrial uses in the waterfront area where related access and use impacts to the development nodes can be mitigated.

Policy 5: Promote quality development to strengthen the waterfront’s character and sense of identity.

SOUTH WENATCHEE – Promote the continued revitalization of South Wenatchee.

Policy 1: Review residential development standards to promote infill development compatible with the neighborhood.

Policy 2: Seek opportunities to create distinct commercial districts in South Wenatchee that serves the neighborhood and urban area.

RESIDENTIAL DEVELOPMENT – Promote increasingly attractive neighborhoods with convenient access to services.

Policy 1: Promote higher densities along major corridors and in existing neighborhoods already characterized by density.

Policy 2: Discourage lower density development on flat, easily developed ground.

Policy 3: Enhance Wenatchee’s residential neighborhoods with more services, open space, and pedestrian/bicycle improvements to support appropriate infill development.

Policy 4: Provide more green space, community gardens and quality streetscapes with street trees and sidewalks.
Policy 5: Adopt more flexible design standards for residential development that will permit the construction of different housing types compatible with surrounding neighborhoods.

Policy 6: New non-residential development in existing residential neighborhoods should be designed (landscaping and building design) and operated (traffic, noise, lighting, hours) to be compatible with the existing neighborhood.

Policy 7: Family daycare providers (as defined in RCW 74.15.020) may be permitted in a residential dwelling in all residential and commercial zones as conditioned by RCW 36.70.450.

Canyons and Foothills – Conserve open space in the foothills surrounding the city and ensure appropriate development in the canyons.

Policy 1: New residential development at the edge of the urban growth area should not impact the open qualities of the hillsides or disrupt the small-scale qualities of existing neighborhoods.

Policy 2: Carefully consider new development in the canyons for impacts from flooding, circulation and other emergencies.

Coordinated Planning – Continue to work cooperatively within the region to address transportation, public services and facilities, and land use.

Policy 1: Encourage Chelan County to continue implementation of the City’s Comprehensive Plan and development regulations within the planning area.

Policy 2: Support the development of regional public and commercial facilities, such as the airport, landfills, industrial parks, Mission Ridge, medical facilities and academic institutions.

Policy 3: The City will work with Chelan County and other regional entities to identify lands useful for public purposes such as utility corridors, transportation corridors, landfills, sewage treatment facilities, storm water management facilities, recreation, schools, and other public uses.

Policy 4: Ensure the goals and policies of the City’s Comprehensive Plan are consistent with Chelan County’s County-wide Planning Policies.

Neighborhoods – Utilize neighborhood planning as a way to tailor the comprehensive plan and implement it in areas that reflect the neighborhood’s history, character, current conditions, needs, values, vision and goals.

Policy 1: Recognize neighborhood planning and implementation as critical tools for refining and turning into a reality the vision of the Comprehensive Plan.

Policy 2: Give all community members the opportunity to participate in shaping the future of their neighborhoods.

Policy 3: Build strong, effective strategies for developing and implementing neighborhood plans.
Policy 4: New non-residential development in existing residential neighborhoods should be designed (landscaping and building design) and operated (traffic, noise, lighting, hours) to be compatible with the existing neighborhood.

NEIGHBORHOOD PLANS – The following neighborhood plans are adopted by reference and incorporated as if fully set forth herein:

- Wenatchee Waterfront Sub-Area Plan
- Central Business District Sub-Area Plan
- Sunnyslope Sub-Area Plan
IMPLEMENTATION

The conceptual land use map proposes land use categories for Wenatchee. The following table reflects the beginning elements of the zoning and development standards that might be adopted to implement this plan.

<table>
<thead>
<tr>
<th>District</th>
<th>Primary Uses</th>
<th>General Development Standards</th>
</tr>
</thead>
</table>
| Central Business District | **Primary Uses:**
 - Ground floor retail, food and beverage, entertainment
 - Governmental offices
 Secondary Uses:
 - Upper floor offices
 - Upper floor residential
 - Limited light manufacturing | **Limited on-site parking**
 Architectural design controls
 Tallest buildings
 No setbacks or lot coverage limits
 Design Controls on buildings and parking lots
 Signage controls for illumination, sandwich boards, off-premise, size and location |
| North Wenatchee Business District | **Primary Uses:**
 - Retail
 - Restaurants
 - Banks and services
 Secondary Uses:
 - Upper floor residential | **4 to 6 story height limit**
 Landscaping and signs
 Access control
 Develop pedestrian destination or orientation
 Work on entrance and gateway improvements (landscaping, signage, public art, etc.) |
| South Wenatchee Business District | **Primary Uses:**
 - Ground floor retail, food and beverage, entertainment
 - Professional services
 Secondary Uses:
 - Light manufacturing
 - Auto repair
 - Upper floor residential | **Identify blocks for ground floor pedestrian activity**
 Four story height limit
 Work on entrance and gateway improvements (landscaping, signage, public art, etc.) |
| Waterfront | **Primary Uses:**
 - Development varies by node
 - Ground floor retail, food and beverage, entertainment
 - Residential
 Secondary Uses:
 - Limit industrial activity to active areas
 - Upper floor offices
 - Upper floor residential | **Land use controls applicable to land along Columbia Riverfront**
 Architectural design controls
 Emphasis on connection with waterfront
 Height: 4 to 6 stories |
| Mixed Residential Corridor | **Primary Uses:**
 - One to four family residential
 - Schools, churches, public buildings
 - Adult homes
 Secondary Uses:
 - Apartments
 - Neighborhood services
 - Professional offices | **Architectural controls on multi-family and non-residential development**
 Development limited to suitable locations only
 Focus on intersection development as first phase
 Could require road improvements
 Landscaping required
 Signs strictly limited |
<table>
<thead>
<tr>
<th>District</th>
<th>Primary Uses</th>
<th>General Development Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office & Residential Mixed Use</td>
<td>Primary Uses:</td>
<td>General Development Standards</td>
</tr>
<tr>
<td></td>
<td>- One to four family residential</td>
<td>• Mixed use zone suitable for residential, professional office, and in some limited areas, light industrial uses</td>
</tr>
<tr>
<td></td>
<td>- Professional offices</td>
<td>• Height: 2-4 stories</td>
</tr>
<tr>
<td></td>
<td>- Neighborhood services</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Medical centers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Apartments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Secondary Uses:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Retail and food service</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Light manufacturing</td>
<td></td>
</tr>
<tr>
<td>Neighborhood Commercial</td>
<td>Primary Uses:</td>
<td>General Development Standards</td>
</tr>
<tr>
<td></td>
<td>- Neighborhood services, such as banks, convenience store, bakery, coffee, book stores</td>
<td>• Neighborhood commercial zone intended to provide services at a neighborhood level</td>
</tr>
<tr>
<td></td>
<td>Secondary Uses:</td>
<td>• Height: 4 stories</td>
</tr>
<tr>
<td></td>
<td>- Upper floor residential uses</td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>Primary Uses:</td>
<td>General Development Standards</td>
</tr>
<tr>
<td></td>
<td>- Manufacturing</td>
<td>• Industrial land uses</td>
</tr>
<tr>
<td></td>
<td>- Auto repair</td>
<td>• Allow commercial uses in industrial land uses</td>
</tr>
<tr>
<td></td>
<td>- Warehouses and storage</td>
<td>• Height: 6 stories</td>
</tr>
<tr>
<td></td>
<td>Secondary Uses:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Commercial uses that provide services</td>
<td></td>
</tr>
<tr>
<td>Residential Foothills Low</td>
<td>Primary Uses:</td>
<td>General Development Standards</td>
</tr>
<tr>
<td></td>
<td>- Single family</td>
<td>• Very low density residential suited for foothills area</td>
</tr>
<tr>
<td></td>
<td>Secondary Uses:</td>
<td>• Density: 1-2 units per acre</td>
</tr>
<tr>
<td></td>
<td>- Accessory Dwelling Units</td>
<td>• Height: 2 stories</td>
</tr>
<tr>
<td></td>
<td>- Agricultural uses</td>
<td></td>
</tr>
<tr>
<td>Residential Single Family</td>
<td>Primary Uses:</td>
<td>General Development Standards</td>
</tr>
<tr>
<td></td>
<td>- Single family</td>
<td>• Very low density residential suited for outlying areas</td>
</tr>
<tr>
<td></td>
<td>Secondary Uses:</td>
<td>• Density: 4-6 units per acre</td>
</tr>
<tr>
<td></td>
<td>- Accessory Dwelling Units</td>
<td>• Height: 2 stories</td>
</tr>
<tr>
<td></td>
<td>- Agricultural uses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Home based business</td>
<td></td>
</tr>
<tr>
<td>Residential Low</td>
<td>Primary Uses:</td>
<td>General Development Standards</td>
</tr>
<tr>
<td></td>
<td>- Single family</td>
<td>• Low density residential single family development</td>
</tr>
<tr>
<td></td>
<td>Secondary Uses:</td>
<td>• Density: 6-8 units per acre</td>
</tr>
<tr>
<td></td>
<td>- Accessory Dwelling Units</td>
<td>• Height: 2 stories</td>
</tr>
<tr>
<td></td>
<td>- Agricultural uses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Home based business</td>
<td></td>
</tr>
<tr>
<td>Residential Moderate</td>
<td>Primary Uses:</td>
<td>General Development Standards</td>
</tr>
<tr>
<td></td>
<td>- 1 to 2 family</td>
<td>• Moderate density residential development</td>
</tr>
<tr>
<td></td>
<td>Secondary Uses:</td>
<td>• Density: 8-20 units per acre</td>
</tr>
<tr>
<td></td>
<td>- Accessory Dwelling Units</td>
<td>• Height: 2 - 3 stories</td>
</tr>
<tr>
<td></td>
<td>- Agricultural uses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Home based business</td>
<td></td>
</tr>
<tr>
<td>Residential High</td>
<td>Primary Uses:</td>
<td>General Development Standards</td>
</tr>
<tr>
<td></td>
<td>- 1 to 4 family residential</td>
<td>• Mixed residential densities suitable to a variety of housing choices depending on location and compatibility with neighborhood</td>
</tr>
<tr>
<td></td>
<td>- Apartments</td>
<td>• Density: 10 - 40 units per acre</td>
</tr>
<tr>
<td></td>
<td>Secondary Uses:</td>
<td>• Height: 3 - 6 stories</td>
</tr>
<tr>
<td></td>
<td>- Adult care facilities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Home based business</td>
<td></td>
</tr>
</tbody>
</table>
Due to Wenatchee’s status as the regional urban center, however, the city transportation network is significantly affected by traffic generated from outside the city limits. This presents a significant challenge in utilizing land use and transportation planning policies to encourage infill development and maintain a compact urban area while managing increasing traffic congestion on the transportation network generated outside the planning area.

As such, local transportation planning takes place within the context of greater regional efforts. Goals and policies are informed by and consistent with the Wenatchee Valley Transportation Council’s (WVTC) Confluence 2025 – A Strategic Transportation Plan for the Wenatchee Valley. As the Metropolitan Planning Organization (MPO) for North-Central Washington, the WVTC is the local government consortium responsible for regional transportation in the urbanized area of Wenatchee, East Wenatchee and Rock Island. Regional level of service standards, transportation system analyses, and a prioritized transportation improvement program for the region are developed by WVTC.

INVENTORY

Wenatchee’s transportation system is already multimodal in nature. In addition to its road network, the city’s system includes Link Transit with intra-city and intercity routes and an expanding network of on-road and off-road pedestrian and bicycle facilities. Inter-regional transportation services include the Pangborn Memorial Airport, Amtrak, and Northwestern Trailways. Columbia Station, a nationally recognized multimodal transportation center, connects these forms of transportation in downtown.

Streets/Roadways/Highways

The City of Wenatchee’s street system includes approximately 108 miles in total. For a more detailed inventory, refer to the *City of Wenatchee 2005 Street Preservation and Maintenance Program Evaluation*.

Primary streets within Wenatchee’s transportation network are classified into three categories:

1. **Principal Arterials** - Provide access to major activity centers and connections to or along regional traffic ways. Such streets have the highest traffic volumes and are the major commuting routes.
2. **Minor Arterials** – Provide circulation between Principal Arterials and other activity centers. Streets typically don’t exhibit as high of traffic volumes as Principal Arterials.
3. **Collectors** - Collect traffic from residential areas and connect to Principal and/or Minor Arterials.2

The *Wenatchee Urban Area Circulation Map*, depicting all locally classified streets and identified future roadway connections within the transportation network, is included at the end of this chapter.

2 Local classifications and definitions are not the same as the federal classifications and definitions.

Pedestrian & Bicycle Facilities
Bicycle lanes are typically five foot wide and designated by striping next to the motorized travel lane. The Greater Wenatchee Bicycle Advisory Board (GWBAB) Master Plan details seven existing bicycle lanes, not including the Loop Trail. The Master Plan also describes 12 existing bicycle routes. Routes have bike signs placed at regular intervals, usually a couple blocks apart. No lane markers are used on routes, with bikes sharing the traveled portion of the roadway with motorized traffic, in addition to using unoccupied parking space when safe. Besides describing existing bicycle facilities, the GWBAB’s Master Plan proposes future bicycle projects, including lanes, routes, connections and other facilities for non-motorized transportation. A map detailing existing and proposed bicycle lanes and routes can be viewed at the end of the Transportation Chapter.

The Apple Capital Recreation Loop Trail provides circulated travel between Wenatchee and East Wenatchee for bicycles and pedestrians. It is the longest loop trail in Washington State and traverses more than ten miles of Columbia River shore lands. Since completion in 1994, the Loop Trail has been a popular success. The Trail has become a major transportation corridor used by both communities for recreation and commuting alike. It is managed by the Loop Trail Advisory Committee, made up of all managing agencies and stakeholder representatives.

Transit Facilities
Link Transit provides bus and paratransit service six days a week. Sixteen routes provide service throughout Wenatchee, several of those connecting to surrounding communities in Chelan and Douglas Counties.

In addition to Link Transit service, there are two westbound intercity bus routes and a single eastbound route provided daily by Northwestern Trailways.

Rail Transportation
Amtrak’s Empire Builder offers daily westbound rail service in the early morning and eastbound service in the late evening.

Air Transportation
Pangborn Memorial Airport is co-owned by the Ports of Chelan and Douglas Counties. Four flights, to and from Seattle, are available daily.3

3 Visit pangbornairport.com for more information.
LEVELS OF SERVICE (LOS)

Regional level of service standards apply to the regional transportation system identified in Confluence 2025. Any regional roadway or segment that does not meet each of three different standards is considered deficient by Wenatchee Valley Transportation Council.

The two performance standards are based on the Highway Capacity Manual LOS D. One standard is measured by the amount of delay experienced by vehicles entering an intersection during the afternoon peak period. LOS D at a signalized intersection means that over the time of one hour, each vehicle should not be delayed longer than 55 seconds; at an unsignalized intersection the delay shouldn’t exceed 35 seconds/vehicle, averaged over one hour. The other LOS standard concerns travel time along identified Regional Mobility Corridors. At LOS D, if the posted speed is between 30-35 mph then the average travel speed for each vehicle shouldn’t drop below 14 mph, averaged over one hour. Regional corridors within Wenatchee include: SR285/N. Wenatchee Ave, Wenatchee Ave, West Wenatchee (Maiden Ln, Western Ave, & Cherry St), Miller/Crawford, and 5th Street.

Adopted LOS standards for the city road network are consistent with what the WVTC has set for the greater urban region, with the exception of the regional corridor, SR285/North Wenatchee Ave. Given the regional contributions to SR285, the city realizes that limiting development within city limits (as a consequence of transportation concurrency) will not prevent LOS from continuing to drop. Therefore, the city has decided to implement LOS E performance standards for SR285, which is projected to be deficient by 2025.

In addition to implementing regional LOS standards, Wenatchee applies a LOS D for all signalized intersections along locally classified arterials and collectors.

The third regional level of service standard applies to non-motorized transportation. “All roadways on the regional system should have sidewalks and proposed bicycle facilities should be funded and constructed.”4 As such, areas where sidewalks and/or proposed bicycle facilities are not present are considered deficient.

Current City standards require sidewalks along all residential, collector, and arterial roadways. New and re-development occurring along roadways are required to put in sidewalks if they are absent. Although standards are in place now, there are many streets that do not have continuous sidewalks. Eight projects listed within the City’s TIP include installing or improving sidewalks along currently deficient roadways. Additionally, there is funding set aside for other pedestrian safety improvements throughout the city network.

4 Confluence 2025. WVTC. Pg C-25.
5 See Confluence 2025: pg C-26 for specific sidewalk deficiencies.
Regional LOS Projected Deficiencies

Legend
- Intersection Deficiencies, 2010
- Intersection Deficiencies, 2025
- Mobility Corridor Deficiencies, 2025
- Parks
- Schools
- Urban Growth Area

City of Wenatchee
Community Development
December 2006
Options for regional connectivity to consider include:

4. **Bridge Connections.** Pursue greater connectivity with a more centrally located bridge across the Columbia River and/or to Sunnyslope and points west with a second bridge across the Wenatchee River.

5. **Alternative Modes of Transportation.** Significantly improve pedestrian and bicycle facilities (e.g. sidewalks, bike lanes) and transit service, thereby expanding capacity of the existing system’s infrastructure.

FOOTHILLS AND CANYONS

Given the difficulties raised by piecemeal development and steep terrain, residential areas in Wenatchee’s western foothills are served by a limited number of access points. Combined with limited connectivity (i.e. number of ways to get someplace), reduced access enhances the problem of concentrating traffic on a few major roads during the morning and evening commutes. It also discourages walking and bicycling trips by containing dead-ends (e.g. cul-de-sacs), which lengthens trip.

In addition to causing everyday traffic backups, limited access points present clear dangers in the case of potential natural disasters including wildfires, floods and/or debris flows (i.e. mudslides). In these extreme events, residents would be funneled onto single egress roads, thereby hindering evacuation and threatening lives. A recent analysis found that approximately 550 residential parcels ultimately feed onto 5th Street, just west of Woodward Drive. The growing Broadview community includes an estimated 150 parcels funneling onto Maiden Lane, just west of Western Avenue. Other potential trouble areas include developments accessed solely by Number Two Canyon Road and Horse Lake Road.

Options to consider in this area include:

1. **Circulation Map.** Identify and protect new rights-of-way connecting the western foothills.

2. **Foothills Planning.** Discourage new development until a more comprehensive plan for the foothills including access, neighborhoods, recreation, critical areas, and disaster preparedness elements can be adopted.

SYSTEM MAINTENANCE & SAFETY

Transportation mobility is dependent on the condition of the system’s streets, bridges, bicycle lanes, and sidewalks. The successful maintenance of Wenatchee’s existing transportation system promotes mobility, safety, efficiency, and infrastructure preservation. By protecting its infrastructure investments, the City can significantly reduce the need for new and/or replacement facilities in the future.
private automobile as their transportation mode of choice for most of their trips. In addition to the car’s perceived advantages of mobility, flexibility, privacy, and comfort, transportation mode choice is also a function of the built or planned environment. Residents are far less likely to opt for alternative modes, including transit, walking, or biking, in areas designed around and for the automobile.

Conversely, residents are more likely to consider transportation alternatives in compact neighborhoods and districts with pedestrian amenities, such as adequate sidewalks and/or bike lanes, mixed uses, narrow streets, short blocks, lighting, landscaping, and visually interesting architecture. For trips less than one mile, studies found that a mixing of uses (e.g. residential and commercial in the same area or building) alone generates four times as many walking trips and that walking increases with connectivity (e.g. fewer cu-de-sacs & dead-ends), more intersections and blocks, narrower streets, and greater visual interest. Not surprisingly, walking as a commuting choice varies substantially among Wenatchee’s neighborhoods. Whereas almost 7 percent of Historic Center residents walk to work, less than 2 percent of West Wenatchee residents do so.

Physically, roadways often have poorly maintained sidewalks and bike lanes or lack them altogether and feature few well marked pedestrian crossings. The one-ways of Mission and Chelan Avenue encourage higher speeds and cut off adjacent neighborhoods from downtown. Many streets offer little in terms of visual interest for walkers. Deep building setbacks and large parking lots separate pedestrians from the activity, safety, and sense of enclosure provided by buildings. By strongly discouraging walking and bicycling, these physical and psychological obstacles contribute to traffic congestion and air pollution, limit opportunities for active transportation, and demobilize and isolate non-drivers including children and seniors.

One other important aspect of pedestrian and bicycle network planning is the level of connectivity with public transportation. Public transportation extends the range of employment, recreational, and social opportunities for pedestrians and bicyclists by linking neighborhoods to local and regional destinations. Since its beginning of fixed-route operations in 1991, Link Transit has steadily matured as a viable transportation option in the Wenatchee Valley.

Although transit ridership remains relatively low in proportion to driving alone, that trend has been improving. The percentage of Wenatchee residents taking public transportation to work increased from 0.2 percent in 1990 to 1.1 percent in 2000. An analysis of its routes, however, suggests that there is a physical divide between transit service and a large portion of the city. Over 4,000, or approximately 33 percent, of the parcels within the Urban Growth Area (UGA) are further than 700 feet (more than 2 blocks) from a Link Transit route.

Policy 4: To protect neighborhood streets from high speeds and volumes, incorporate traffic calming techniques into road standards, development review and transportation improvement projects.

Policy 5: Ensure that the city’s transportation network adequately serves existing and projected development. Existing roadway conditions, such as adequate geometry and sidewalks, serving new development should be evaluated with each development application.

Policy 6: Prioritize road improvements in the existing network to better facilitate transportation circulation from neighborhoods to downtown within the UGA south of the Wenatchee River.

PEDESTRIANS, BICYCLES & TRANSIT
- Provide a mix of transportation options that better meets the changing needs and preferences of Wenatchee residents.

Policy 1: Encourage physical activity and alternative modes of transportation by adopting more pedestrian and bicycle friendly street standards (e.g. pavement width, landscaping requirements).

Policy 2: Improve and maintain pedestrian connections between residential, employment, service, and recreation centers. Give priority consideration to school walking routes and access to transit.

Policy 3: Integrate pedestrian and bicycle concerns into the development review process. Discourage development that limits pedestrian and bicycle connections (e.g. dead-end streets).

Policy 4: Enhance the attractiveness and marketability of downtown by expanding its pedestrian orientation beyond the Wenatchee Avenue core to all of the Central Business District.

Policy 5: Provide a comprehensive and interconnected network of bikeways linking residential areas with employment and recreation centers.

Policy 6: Encourage consideration for new or improved transit stops, shelters, and park & rides where appropriate during development review and roadway reconstruction projects.

FOOTHILLS AND CANYONS
- Ensure adequate emergency access into and out of foothills communities. Improve circulation by increasing connectivity within, between, and to neighborhoods.

Policy 1: Develop a comprehensive Foothills Plan that provides access, transportation, land use, recreation, critical areas and neighborhood protection policies to guide future growth and development in the foothills.

Policy 2: New development located within identified Circulation Deficient Areas shall provide for road connections until adequate secondary access is identified.

Policy 3: Based on results of the Foothills Plan, identify and protect potential rights-of-way granting access to and between foothills neighborhoods and up the canyons.

Policy 4: Coordinate with Chelan County to develop review procedures that manage transportation impacts on the city’s network originating from projects outside of the city and/or urban growth area.

PARKING – Manage the parking supply in such a way that balances perceived needs with land constraints, community appearance, and the promotion of alternative transportation modes.

Policy 1: Adopt parking management strategies including better signage and enhanced pedestrian connections to optimize existing parking facilities.

Policy 2: Promote existing off-street parking reductions for new development with access to transit or public parking facilities.

Policy 3: Offer new off-street parking reductions for appropriate types of projects (e.g. affordable housing, senior housing) and amenities (e.g. bicycle racks, employee showers).

Policy 4: Support structured parking facilities in the Central Business District and other mixed use areas.

TRANSPORTATION DEMAND MANAGEMENT (TDM) – Modify individual travel behavior, optimize the use of existing road capacity, and encourage active forms of transportation to improve safety and efficiency, minimize environmental impacts, and promote socioeconomic benefits.

Policy 1: Adopt strategies including mixed land uses and parking/trip reduction policies that aim to maximize the efficiency of our existing transportation system.

Policy 2: Design and adopt a model TDM program in partnership with major employers and institutions.

Policy 3: Encourage employers to adopt TDM programs by providing incentives such as reduced parking requirements.

FUNDING – Continue to pursue sufficient funding for improving, maintaining, and expanding a comprehensive transportation network.

Policy 1: Continue adequate funding for the operation of the Street Overlay Program.

Policy 2: Fund strategic transportation investments prioritized by each project’s anticipated long-term impact to capacity levels and consistency with city policies.

Policy 3: Consider new funding opportunities, including the use of impact fees, and innovative public/private partnerships, especially in the case of growth and development-related transportation projects.

Policy 4: Coordinate with jurisdictions at the local, regional, and state levels to increase funding for the regional transportation system, including rail, air, and non-motorized modes.

Policy 5: Support transit resource allocations and efforts to increase overall transit funding.

Policy 6: Pursue additional funding sources to implement and maintain an interconnected multi-modal transportation system, and a model Transportation Demand Management program.
ECONOMIC DEVELOPMENT

TOPICS

- Purpose
- Background
- Regional Center
- Downtown
- Entrepreneurial Support
- Quality of Life
- Facilities and Infrastructure
- Goals & Policies

PURPOSE

An Economic Development chapter is not yet a requirement of the Growth Management Act (GMA). However, it does support the City’s own goals encouraging economic development. Community based processes have told us to encourage economic development that enhances our area’s quality of life and builds on our existing resources and strengths.

BACKGROUND

In the late 1990’s, Wenatchee’s primary industry, agriculture, went through a major shift. As a result, the City and its partners were forced to take a step back and look at how we were approaching economic development. If the agricultural industry was going to continue to struggle, what were our options? Was the elusive manufacturer out there who would bring us 200 jobs? Did we have the land base and excess power capacity to support such a recruit? How were we supporting those industries already here? What was in store for our future? In 1999, the City hired the Center for the New West to carry out a High Performance Community Strategy. This effort brought together our leaders, gave us focus, and provided us with a road map for our future community and economic development. The analysis resulted in 16 recommendations, which our leaders are still following. Some recommended strategies have already been completed.

Table 9: Wenatchee High Performance Community Strategies

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Strategy Recommendation #1: Build and sustain work force education and training capacity that teaches and/or updates computer and information technology skills.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strategy Recommendation #2 Provide access to the growing Hispanic community and others, for whom the “digital divide” is a reality, by equipping a community center in South Wenatchee with advanced telecomputing capabilities.</td>
</tr>
<tr>
<td></td>
<td>Strategy Recommendation #3: Create a one-stop business center to improve the delivery of services to the small business community.</td>
</tr>
<tr>
<td></td>
<td>Strategy Recommendation #4: Deploy NxLevel Entrepreneur training programs for business start-ups, agriculture/food specialty companies, micro-enterprises, youth entrepreneurs. Spanish versions of these training programs should be made available to Hispanic entrepreneurs.</td>
</tr>
<tr>
<td></td>
<td>Strategy Recommendation #5: Pursue the recommendation of the SCORE incubator study team “to further quantify the community’s need, expected payoff and degree of community support” for one or more incubators.</td>
</tr>
<tr>
<td></td>
<td>Strategy Recommendation #6: Develop an Internet/information technology cluster in the Wenatchee area.</td>
</tr>
<tr>
<td></td>
<td>Strategy Recommendation #7: Implement an opportunity assessment initiative to identify upstream, downstream and spin-off business opportunities and other economic activities, e.g. research, that may exist in companies, institutions or organizations already in the community.</td>
</tr>
<tr>
<td></td>
<td>Strategy Recommendation #8: Refocus current industrial recruitment efforts on those that build on local networks and relationships</td>
</tr>
</tbody>
</table>
ENTREPRENEURIAL SUPPORT

The Wenatchee area has definitely been participating in the entrepreneurial boom with a significant and steady increase of non-farm proprietors since the 1970’s. The 1990 to 1998 period saw the addition of approximately 185 new proprietors each year. Chelan County has 3635 business establishments, of which 3301 (91 percent) have 20 or fewer employees; 2420 (67 percent) have fewer than four employees. What’s more, the 2000 Census noted that nine percent of Wenatchee’s residents were self employed, which shows a strong home-based business/lone eagle trend. These figures speak to the strength of small business in our region.

Options for entrepreneurial support to consider include:

1. Support and strengthen businesses locating in non-traditional environments (home-based, rural, live/work warehouses) due to outstanding fiber infrastructure.
2. Explore financing and housing for incubator facilities to help foster the development of identified industry clusters and support the creative class.
3. Developing new business districts and supporting the development of downtown will ensure alternative spaces for new business creation and start ups, provided there is care with district design.
4. Support identified business clusters so that opportunities will arise for new entrepreneurial endeavors related to the economic strengths of the region.

QUALITY OF LIFE

The Center for the New West process opened the community’s eyes to the connection of the built and natural environments in regard to the recruitment and retention of business. In the survey done to accompany the Comprehensive Plan update, 48 percent of respondents noted that our quality of life and natural setting are the strongest economic development tools the area has to offer. With our area’s state-of-the-art fiber optic infrastructure, businesses can choose to locate here and be as connected as they were in more urbanized areas. The proximity of outdoor and indoor recreational opportunities has become an increasingly important asset in business recruitment. Noted facilities of importance include Mission Ridge, the Performing Arts Center of Wenatchee, the Apple Capital Recreational Loop Trail and the Foothills Trails system. Additionally, the existence of continuing education programs was noted in the Center for the New West process as a critical component to community development by providing life long learning opportunities.
GOALS AND POLICIES

REGIONAL CENTER - Promote the continued development of Wenatchee as the regional center of North Central Washington.

Policy 1: Promote mixed use zoning and development standards that ensure the city’s growth as an urban center.

Policy 2: Support the recruitment and development of regional facilities (e.g. recreation, health, arts, education) that further solidify Wenatchee’s place in the region.

Policy 3: Support regional partners in the location of needed industry to further enhance the region.

Policy 4: Recognize and anchor the Highway 97 corridor as an interstate connector.

DOWNTOWN - Protect and strengthen the vitality of downtown.

Policy 1: Strengthen the Central Business District through new development standards that strengthen and build on downtown’s historic orientation and connect it with adjacent business and residential districts.

Policy 2: Identify, protect and encourage ground floor, pedestrian oriented commercial activity.

Policy 3: Encourage opportunities for residential redevelopment within downtown.

Policy 4: Ensure downtown is serviced by adequate circulation, parking and fiber infrastructure.

Policy 5: Enhance downtown’s entertainment and arts presence within the region.

Policy 6: Explore the creation of one or more business incubators that build on the creative nature of downtown.

ENTREPRENEURIAL SUPPORT - Foster the development of an environment that supports small business and the creative class.

Policy 1: Support the development of educational infrastructure that attracts small businesses and the creative industry.

Policy 2: Support industry clusters that provide spin-off opportunities for small business endeavors based on our region’s existing and future strengths.

Policy 3: Investigate and support the development of alternative financing mechanisms that will foster development of new business endeavors.

Policy 4: Support the development of alternative business locations, including incubator spaces that would create opportunities for the creative industry to thrive.
QUALITY OF LIFE - Support the enhancement of Wenatchee’s built and natural environment as an attraction for community and business growth.

Policy 1: Encourage the development of recreational, arts and educational infrastructure and facilities that meet the community’s and region’s needs.

Policy 2: Encourage a built environment that enhances Wenatchee’s natural setting and protects the regional landscape.

Policy 3: Foster the development of alternative spaces for living and working, including the support of new and emerging districts that are distinct and provide a unique sense of identity for Wenatchee.

FACILITIES & INFRASTRUCTURE - Work with regional partners to ensure that regional infrastructure needs are addressed.

Policy 1: Support regional partners in the addition of needed infrastructure (transportation, education, fiber, water) to further enhance the region.

Policy 2: Preserve and enhance those facilities that are critical to the region’s competitiveness such as Pangborn Memorial Airport, low cost power and the regional water system.

Policy 3: Support and protect special regional and commercial facilities that enhance the region (e.g. Mission Ridge, regional health care facilities).
CULTURAL AND HISTORIC RESOURCES

TOPICS

- Purpose
- Background
- Creative Class
- Environment
- Historic Preservation
- Facilities and Infrastructure
- Civic Life
- Goals and Policies

PURPOSE

Wenatchee is not required by the Growth Management Act to include a Cultural and Historic Resources element to the Comprehensive Plan. However, as Wenatchee is the regional center for North Central Washington, its citizens are speaking up to encourage, protect, and stimulate the cultural climate of the community that will in turn benefit the region and direct positive growth for the long term. Based on the public process for the Comprehensive Plan and the community's desire to direct the future growth and development of our community by providing a defined focus on the topics defined in this section, a Cultural and Historical Resources chapter emerged.

BACKGROUND

Wenatchee is known as a city that values, maintains, and enhances the resources that establish the public realm, including schools, libraries, museums and other cultural facilities, streets and public rights-of-way, governmental facilities and public open spaces. The city strives to promote the use of these places for public gathering and cultural expression. Recent community meetings have identified the need to record

Annual Growth Rate in Adult Population with Bachelor's Degree or Higher, 1990-2000

- Washington State: 1.9%
- Ellensburg: 0.7%
- Leavenworth: 1.1%
- Moses Lake: 1.2%
- Spokane: 1.9%
- Seattle: 2.2%
- East Wenatchee: 2.7%
- Walla Walla: 2.9%
- Chelan: 3.2%
- Wenatchee: 4.2%

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%
Wenatchee’s “sense of place” through a continuous public dialogue about preservation, sustainability, hospitality, and the influence of arts, preservation and culture. Public and private groups have formed to support these efforts. Wenatchee also strives to welcome diversity and is working to raise awareness and understanding of its peoples, hoping to nurture the ethnic and cultural traditions of our diverse citizenry.

CREATIVE CLASS

![Image](ARTISTS ENGINEERS SCIENTISTS NOW LEAVING)

In recent years, much has been made of the “creative class” in economic development circles. Those cities which attract and retain this growing body of knowledge workers including artists, designers, professionals, entrepreneurs and high technology personnel tend to prosper, while those that do not tend to stagnate. No longer limited by access to transportation networks and large urban centers, these creative businesses and employees are increasingly attracted to communities that offer diverse cultural and recreational opportunities. They are looking for unique urban areas and neighborhoods that are more culturally stimulating, tolerant, diverse and open to new ideas. There is a strong correlation between the number of musicians and writers in a place, for example, and the number of highly skilled knowledge workers.

In addition to larger metropolitan areas such as San Francisco, Austin and Seattle, the creative class is gravitating to smaller communities including Bend (OR), Missoula (MT), and Walla Walla. Given its natural

Percentage of Adult Population with Bachelor’s Degree or Higher, 1990-2000

![Bar chart](chart)

17 Incidentally, prosperous “empty nesters” and active retirees are also moving to cities and towns that offer these same amenities.
beauty and historic assets, it’s not surprising that Wenatchee’s creative class is growing according to census data. Generally speaking, this dynamic group of knowledge workers tends to be highly educated. As of 2000, approximately 23 percent of the adult population over the age of 25 in Wenatchee possessed Bachelor’s degrees or higher. Although this figure was lower than in Washington State as a whole, it was higher than other eastern Washington municipalities including East Wenatchee, Chelan, Leavenworth, Moses Lake, and Walla Walla. In terms of percentage increases, Wenatchee’s share of four-year college educated residents exhibited a high annual growth rate between 1990 and 2000. Over the ten-year period, the percentage of higher educated adults grew at a rate of 3.2 percent annually. This rate of growth exceeded that of Washington and was only lower than that of Chelan and its rapidly changing population. Given Wenatchee’s lack of a four-year college or university, the data suggests that the community is experiencing a significant net inflow of college graduates.

Wenatchee’s increasing educational attainment is related to its share of creative class employment. Although there are many professions in a number of industries that could be classified as creative class employment, two major census categories are clearly representative of the new knowledge and ideas economy, Arts & Entertainment and Recreation, and Professional, Scientific & Technical Services.

According to the 2003 U.S. Census of County Business Patterns, for every 1,000 jobs within its boundary, Chelan County had 19.3 employees in the Arts, Entertainment & Recreation sector. Although this ratio was less than the Washington State average, it exceeded those of Grant, Walla Walla, and Spokane counties. Similarly, the County’s ratio of 35 Professional, Scientific & Technical Services employees for every 1,000 jobs is higher than those of Grant, Walla Walla, and Douglas counties.

In Chelan County, 66.7 percent of establishments have four or fewer employees. This speaks to how the area attracts small, start-up companies. In addition to its high quality of life and relatively low costs of living, Wenatchee’s state of the art fiber optic network provides the community with reliable access and ample speed and capacity. As a result, small creative companies specializing in graphic arts, computer gaming, website design and operation, film making, and other applications have been drawn to the area. Consistent with creative class theory, many of these entrepreneurs have chosen unique spaces in downtown Wenatchee with access to recreation and social outlets (e.g. Apple Loop Trail and coffee houses).
continuance of the industry that has made the community unique.

Scenic resources and open space have become topics of community preservation and value. These natural resources are intrinsic to Wenatchee’s identity and attraction and need to be protected.

HISTORIC PRESERVATION

In the early 1990’s the city identified the importance of preserving downtown buildings as a way of reclaiming the city’s identity and heritage. As noted in the Environment section above, the number of commercial and residential structures participating in the City’s Certified Local Government/Historic Preservation program is growing and the first neighborhood historic district is in place. These efforts have contributed to a unique sense of identity for the city and its residents both old and new.

FACILITIES & INFRASTRUCTURE

As the regional center for North Central Washington, many facilities support the area’s cultural and artistic needs. The Stanley Civic Center is a key facility which houses the Convention Center and the Performing Arts Center of Wenatchee. The Wenatchee Valley Museum and Cultural Center, located downtown, provides unique exhibits of north central Washington’s past and local artists, as well as holding diverse venues for local residents and families. The Wenatchee Community Center, housed in the former St. Joseph’s Church, provides a new venue for building the social capital and fabric of the South Wenatchee neighborhood. The city is also home to Wenatchee Valley College and the Confluence Technology Center, both of which offer a variety of state-of-the-art facilities designed to accommodate civic, cultural and economic development activities. Additionally, the area’s wineries are beginning to host a number of cultural events, including concerts and theatre.

The city has grown both in the number and variety of arts/cultural/civic groups offering programming. The city has also expanded in the number of facilities that serve their needs, including several owner-operated facilities (e.g. Riverside Playhouse, Woods House Conservatory of Music, Pressroom Theater). The survey results from the Comprehensive Plan process noted that nearly 42 percent of respondents were very interested in performing and noted visual arts as a recreational amenity.

CIVIC LIFE

Wenatchee has over 70 organizations providing performances, visual arts and diversity experiences, in addition to programming from area schools, including the Wenatchee Valley College. The College has supported the city in this arena by building new arts and studio space, carrying out a film and lecture series, and providing continuing education programs that have over 1,200 participants enrolled. The
sculpture, pottery, glassware, prints and cards along with offering educational programs to children and adults.

The Wenatchee Valley College campus houses the Robert Graves Gallery, which has supported visual arts programming since 1976. The Robert Graves Gallery is a non-profit, community-supported, public art gallery; it promotes awareness of visual arts through art classes, lectures, programs, workshops and exhibitions. Between Wenatchee Valley College and several private enterprises, a variety of classes and exhibitions are held throughout the year, effectively supporting the growth of the visual arts in the region.

Civic Environment
The North Central Regional Library (NCRL), which serves North Central Washington with numerous branches and mail order library resources, is a statement of the region’s commitment to rural literacy and engagement. The system of 28 community libraries circulates a collection of over 500,000 hardbound and paperbound books. Recently, NCRL made a welcome addition to Downtown Wenatchee by purchasing and rehabilitating a former Coca Cola bottling plant for its headquarters.

Wenatchee has a newly formed Diversity Advisory Council and three Sister City relationships with Korea, Japan, and Mexico. As mentioned above, Wenatchee Valley College has become increasingly involved in engaging the community in visual, performing, and civic dialogue activities and has several international exchange programs.

Wenatchee is also home to many freelance writers. A local writers group hosts the annual “Write on the River” conference held at the College to support the growth of this sector of the community.

Events
Of the 280 cultural events listed for the 2005 calendar year, 16.7 percent were theatrical in nature, 20 percent were sporting in nature, 3 percent were visual arts oriented, 13 percent were musical performances, 6 percent were film events, and almost another 6 percent were related to the emerging wine industry.
GOALS AND POLICIES

REGIONAL CENTER - Promote Wenatchee as the urban hub for cultural and historic resources in the North Central Washington region.

Policy 1: Promote and enhance Downtown Wenatchee as the region’s historic, cultural and civic center.

Policy 2: Support organizations and facilities that promote and encourage cultural, historic and environmental dialogue.

Policy 3: Cultivate Wenatchee’s unique sense of place by attracting development that enhances the cultural and historic environment.

CREATIVE CLASS - Strengthen Wenatchee’s attraction and support for the creative class.

Policy 1: Identify opportunities for potential overlay zones and cultural districts to develop creative business clusters

Policy 2: Support the development of incubator or “alternative” spaces for small creative businesses to thrive.

Policy 3: Promote spaces for local artists to develop and present their work.

Policy 4: Support educational facilities and arts and cultural organizations that foster an innovative environment in the city.

Policy 5: Encourage diverse businesses, business districts and community activities that develop an environment of inclusiveness, cultural exchange and civic dialogue.

ENVIRONMENT - Protect and enhance Wenatchee’s unique sense of place.

Policy 1: Preserve Wenatchee’s scenic points of interest including Saddlerock and the viewpoint along Skyline Drive.

Policy 2: Enhance the Highline Canal and preserve its historic connection to agriculture.

Policy 3: Support the Wenatchee Valley Farmer’s Market and similar organizations that seek to marry the environment and the economy.

Policy 4: Utilize the one-percent for the arts program to enhance and energize Wenatchee’s arts environment.

HISTORIC PRESERVATION - Preserve, maintain and honor the city’s significant historic resources.

Policy 1: Foster community stewardship in honoring the beauty and accomplishments of the city’s history and its built environment.

Policy 2: Protect and enhance the aesthetic and economic vitality of historic buildings, structures, sites, districts and objects through the development and implementation of appropriate design guidelines.
Policy 3: Identify and implement incentives to private property owners for the preservation and rehabilitation of historic buildings, structures, sites, districts and objects.

Policy 4: Discourage the demolition of historic properties by facilitating their adaptive reuse.

Policy 5: Leverage Wenatchee’s historic character as an economic development tool through heritage tourism, cultural events, creative class business recruitment, and the adaptive reuse of buildings.

Policy 6: Maintain the continued visibility and community focus on the Wenatchee Register of Historic Places through the partnership of the City, Washington State (through the Certified Local Government program) and the Wenatchee Historic Preservation Board.

Policy 7: Promote historic preservation to provide for the identification, evaluation, and protection of historic resources within the City of Wenatchee and preserve and rehabilitate eligible historic properties within the City for future generations.

CIVIC LIFE - Foster opportunities for lifelong educational, artistic and cultural exploration for all citizens.

Policy 1: Support the public school system and provide for its growth.

Policy 2: Encourage continuing education and lifelong learning opportunities through local agencies, colleges, universities and organizations.

Policy 3: Support the regional library system and provide for its growth.

Policy 4: Enhance the presence of the performing, visual and creative arts.

Policy 5: Encourage the Wenatchee Diversity Council in building lasting community relationships and events that encourage civic dialogue and community engagement.

FACILITIES & INFRASTRUCTURE - Support the development of facilities and infrastructure that further enhance Wenatchee’s innovative and creative climate.

Policy 1: Recruit and support facilities that provide places for cultural and civic dialogue.

Policy 2: Strengthen and enhance Wenatchee’s places for educational experiences, broadening education for all sectors of the community.

Policy 3: Develop public spaces that foster neighborhood identity and provide community gathering places.
The scenic landscape of the Wenatchee Valley presents one of its most impressive regional qualities. It contains the unique combination of rugged North Cascades mountain peaks and high desert foothills to the west, basalt rock formations and fields of grain to the east, and working fruit orchards all around. This combination of landscape elements makes it a truly unique place. As the supply of developable land continues to dwindle though, the open character of the surrounding foothills and the number of orchards dotting the landscape are increasingly threatened.

Wenatchee A High Performance Community Strategy developed for the City of Wenatchee, Port of Chelan County and the Quest for Economic Development in 2000 discusses the importance of quality of life in generating and maintaining a strong economic base. Wenatchee’s strengths identified include: recreational opportunities, health care, special events, downtown look and feel, and cultural opportunities. Weaknesses identified include: community feeling, community identity, and gateway appeal; all of which speak to the topics of community design.

GATEWAYS

From a design perspective, gateways are significant points of entry into a community, district, or neighborhood. In addition to creating first and lasting impressions for newcomers, they provide visual and psychological boundaries for residents. Whether descending from the foothills, driving into downtown, or crossing the Columbia River, Wenatchee’s gateways provide opportunities to convey strong images as a regional center of culture, education, commerce, and recreation.

Wenatchee’s key gateways into the city include:

- US 2/97 eastbound from Seattle
- US 2/97 (Odabashian Bridge) westbound from East Wenatchee
- SR 285 southbound from Sunnyslope
- SR 285 (Senator George Sellar Bridge) westbound from East Wenatchee
- Malaga-Alcoa Highway northbound from Appleyard
- Apple Capital Recreation Loop Trail pedestrian/bicycle bridges

The vertical descent from the west and the two bridge crossings create natural transitions and optimal gateway locations. Unsightly automobile oriented land uses at the northern and southern peripheries of the city, however, significantly impact these first impressions. Not only must visitors travel a fair distance from the gateways to reach the award-winning downtown, they must do so intentionally, as the existing traffic patterns funnel them away from Wenatchee Avenue on the Chelan/Mission one-ways.

With the possible exception of downtown, there are a limited number of internal gateways within Wenatchee. That is, few of Wenatchee’s neighborhoods and districts help orient residents and visitors with design cues or themes. Although some subdivisions
and developments include monument signs and/or gates, they often lack the architectural identity or mature landscaping of classic neighborhoods such as the Grandview Historic District.

For a number of reasons, both aesthetic and economic, the distinctive entrances into Wenatchee and its districts should be preserved and enhanced. A gateway enhancement program could target significant gateways along major arterials for strategic improvements such as land use changes, development standards, landscaping, paving, signage, and public art that positively contribute to a sense of place.

DISTRICTS

Districts are activity centers within an urban area that have recognizable functions, boundaries, and design themes. They may be strictly residential or commercial in nature, or they might be a compatible mix of shops, apartments, offices, and townhouses. Whether they are single use or mixed use in nature, districts provide a definite sense of place for residents, employees, and visitors. That is, you are made well aware when you are in a district. A person can distinctly imagine a district, from its architectural styles to its general “feel,” when another mentions it.

Examples range from trendy shopping districts to industrial warehouse districts. Others include arts/entertainment districts that encourage neon lights and colorful signage or small neighborhood retail districts with corner stores and cafés.

Downtown Wenatchee National Register District

The Downtown Wenatchee National Register District is a collection of commercial, mixed-used, and warehouse buildings located in the central business district. Since the city’s establishment in 1892, this area has served as the pulse of downtown’s commercial and industrial heritage. The National Register Historic District is comprised of nine and one-half blocks located a short distance west of the Columbia River and parallels the riverfront. The historic district is bordered by Mission Street to the west, Columbia Street to the east, N. 1st Street to the north, and Kittitas Street to the south. Three streets run north-south and five run east-west. The spine of the district, Wenatchee Avenue, runs north-south and contains mostly smaller scale (one- to four-story) commercial buildings mixed with a few substantial buildings such as the ten-story Cascadian Hotel and six-story Doneen Building that anchor the downtown. Paralleling Wenatchee Avenue to the east is Columbia Street, which is lined with warehouses next to the railroad line. Also running north-south is Mission Street (one block west of Wenatchee Avenue) which
Outside the historic center of Wenatchee, commercial and residential districts have less cohesion and are hard to identify. The North Wenatchee Center or retail district is spread out and lacks a discernible center. With its higher residential densities, large number of small businesses and strong Latino influence, South Wenatchee could support a more pedestrian friendly business district such as a Mercado. Although the area around the intersection of 5th and Miller possesses all the makings of a vibrant mixed use neighborhood including a grocer, offices, apartments, single family homes, and a coffee shop, it is disjointed, designed for cars and not easily navigated by pedestrians.

If districts represent the focal points of a city, transportation and activity corridors represent the pathways and public rights-of-way between those focal points. In addition to serving the function of moving goods, services, and people from one place to another, corridors visually connect and weave together pieces of the urban fabric.

Community design elements of a corridor include:
- Views (e.g. Saddlerock framed at the end of Orondo)
- Land uses
- Building orientation
- Landscaping & Signage
- Street furniture - benches, trash receptacles, bus stops, lampposts
- Bike paths and sidewalks
- Civic art
- Traffic operations (e.g. one-way or two-way)

When properly designed and executed, these elements can coalesce to create an overall sense of place, promote economic activity, encourage physical activity, enhance wayfinding, decrease traffic problems, and even reduce vehicle speeds and crime through visual cues (e.g. street width,
lighting, and “eyes on the street”18. Unattractive and poorly planned corridors can engender visual confusion and disorientation, limit economic marketability, promote speeding, and create dangerous unprotected spaces for pedestrians.

Wenatchee Avenue, which stretches from the Sellar Bridge to the Wenatchee River, is a corridor of marked differences. The northern and southern ends of the corridor are dominated by automobile-oriented commercial and industrial users featuring large signs, deep building setbacks, and underutilized surface parking lots. These segments are in sharp contrast to the blocks running through Wenatchee’s traditional core. They generate major traffic issues by spreading out activity rather than focusing it at specific nodes. Although required landscaping is slowly beginning to soften the appearance of Wenatchee Avenue, significant enhancements are needed to overcome the negative perceptions of the corridor by residents and visitors.

Transitioning arterial streets such as Western, 5th, and Maple, also provide opportunities for corridor improvements. Existing land uses including small businesses, public facilities, adult care facilities and higher density residential developments along many of these streets create the potential for new corridor zoning overlays. To help mitigate traffic and aesthetic impacts of more intense land uses, major corridors such as 5th Street, Western, Miller and Maple could be targeted for enhancements.

WALKABLE COMMUNITIES

Prior to the advent of the automobile, single family homes, townhouses, and apartments were built close to places of work, worship, transit, shopping, and recreating. The mobility and flexibility afforded to families by the personal automobile has since allowed them to move further away from traditional urban centers to single family subdivisions. As a result, suburban dwellers are less likely to be active as a matter of routine whether it is biking to the store for a gallon of milk, walking to school, or climbing stairs in a multifamily building. Other technological innovations including household appliances and yard equipment have only compounded the problem by engineering exertion out of our daily lives.

Recent studies linking suburban living with obesity have called attention to the physical design of our neighborhoods. Residents in low density sprawling areas are more likely to be obese and suffer from hypertension than those in more compact communities19. A mixed-use land use pattern, on the other hand, increases the number and share of walking and biking trips. For trips of less than one mile, mixed-use communities can generate up to four times as many walking trips20. Engrossed Substitute Senate Bill (ESSB) 5186, passed by Legislature in 2005, recognizes this linkage between health and the built environment, requiring communities to consider urban planning approaches in promoting physical activity and active forms of transportation (e.g. walking & bicycling).

18 "The sidewalk must have users on it fairly continuously, both to add to the number of effective eyes on the street and to induce a sufficient number of people in buildings along the street to watch the sidewalks." – Jane Jacobs, The Death and Life of Great American Cities (1961)

There are many different design techniques that improve walkability of streets such as Chelan and Mission. If returning such one-way streets to two-way traffic will detrimentally impede traffic circulation, there are several additional opportunities to make streets more inviting for pedestrians and bicyclists, as well as improving safety for all transportation modes. One strategy involves reducing traffic to two lanes; this allows room for an expanded sidewalk, diagonal on-street parking, and/or bicycle lanes.

Other ways to improve walkability and safety for pedestrians include narrowing a street at pedestrian crossings (commonly referred to as “bulb outs”), adding trees and/or landscaping in between the street and the sidewalk which poses as an additional barrier between pedestrians and cars, and adding street furniture that invite people to spend time on the sidewalk. An example of a more pedestrian friendly Mission St is shown below. Techniques used in the picture include “bulb outs” at crossings and street trees as well as promoting active ground-floor uses and increasing the height of buildings to include more uses such as offices and/or residences.

DARK SKY DESIGN

Dark Sky Design is a means to design lighting that will use appropriate lighting levels for residential, commercial, and public areas that minimizes over illumination, sky glow (glowing effect visible above populated areas), light trespassing onto adjoining properties, clutter (excessive grouping of lights) and up-lighting (light emitted upward by luminaire (complete lighting unit)). The City of Wenatchee has recognized the need to maintain as natural a nocturnal environment as possible, even in areas of considerable human settlement. Science has determined the significance of preserving
GOALS AND POLICIES

GATEWAYS -- Improve the visual appeal and navigability of Wenatchee by enhancing gateways into the city, its districts and neighborhoods.

Policy 1: Develop visually attractive and identifiable gateways at primary entrances to the city using a combination of streetscape, signage, and building orientation to create memorable community entries.

Policy 2: Preserve and enhance views of significant natural and built features and landmarks such as Saddlerock, the Wenatchee Valley from Skyline Drive, and the Columbia River.

Policy 3: Protect the edges of neighborhoods and districts through compatible design and development standards, signage, and landscaping.

DISTRICTS – Foster distinct and vibrant mixed use and commercial districts.

Policy 1: Adopt design standards for certain mixed use and commercial districts, including the downtown and waterfront.

Policy 2: Encourage mixed use and commercial districts to incorporate functional public spaces such as neighborhood parks or pedestrian plazas.

Policy 3: Require pedestrian circulation through new mixed use and commercial projects with sidewalks and internal pathways.

Policy 4: Allow on-street parking to count towards off-street parking requirements in selected mixed use areas to encourage compact, pedestrian oriented development and reduce the size and impacts of parking lots.

Policy 5: Facilitate residential development in the downtown and other areas close to employment, cultural and shopping opportunities.

Policy 6: Enhance sidewalk activity by encouraging development to site buildings close to the street, with parking located behind or to the side of buildings, and to include ground-floor façade treatments that generate pedestrian interest.

NEIGHBORHOODS – Support the progression of attractive and safe residential neighborhoods.

Policy 1: Incorporate appropriate traffic calming techniques within residential street standards and implement along existing streets when conditions warrant.

Policy 2: Develop design standards for multi-family units that feature compatibility with the surrounding neighborhood, attractive architectural characteristics of single-family housing, and appropriate screening/placement of surface parking and waste collection areas.
Policy 3: Implement a review process for non-residential and multi-family projects within single-family residential districts that allows surrounding residents to comment on potential impacts.

Policy 4: Establish design standards and parking requirements for accessory dwelling units to ensure neighborhood character is maintained.

Policy 5: Promote a mix of uses in neighborhood commercial centers using incentives that encourage appropriately scaled buildings with second floor offices or residences.

CORRIDORS – Develop appealing and efficient residential, mixed-use, and commercial corridors.

Policy 1: Create an overall sense of place along corridors by concentrating development in districts and discouraging new strip commercial development.

Policy 2: Encourage development to orient around transit stops and to provide convenient access to such stops.

Policy 3: Mitigate the impact of increased traffic and higher densities along corridors through streetscape enhancements including pedestrian-scaled lighting, trees, landscaped medians, planter strips, and street furniture.

Policy 4: Ensure design and use compatibility of new corridor development with adjacent residential neighborhoods.

Policy 5: Regulate signage based on the premise that community aesthetics are a driver of economic development.

WALKABLE COMMUNITIES -- Promote physical activity through safe and pleasant routes to employment centers, neighborhood services, parks, and schools.

Policy 1: Consider the potential for residents and/or employees to walk to parks, schools, and shopping throughout the development review process.

Policy 2: Assess the “walkability” and “bikability” of school and commuting routes to determine priorities for capital improvements such as sidewalks, improved crossings, and bikeways.

Policy 3: Reduce parking requirements for new development that includes pedestrian and/or bicycle amenities such as walking paths, bike racks, or employee showers.

Policy 4: Support local walking and bicycling group efforts and participate in events designed to increase alternative mode use.

Policy 5: Develop standards for distinctive, safe crosswalks at major street intersections and places where there’s potential for significant pedestrian traffic, including parks.

Policy 6: Where feasible, separate motorized vehicles, bicycles and pedestrians along busy streets, utilizing landscaping, striping, and parking.

DARK SKY DESIGN - Educate and promote the use of appropriate lighting levels for residential, commercial, and public areas to help reduce sky glow, light trespassing, and up lighting.

Policy 1: Outline and develop a communications plan for educational and incentive materials informing residents and business owners on light pollution, the benefits of Dark Sky Design,
waterfalls, parking and picnic areas provides a changing atmosphere all season long. The site is owned by Washington State Parks, managed through a contract with Chelan County. The County works with the not-for-profit Ohme Gardens “friends” who support the preservation of the site.

Wenatchee School District
The Wenatchee School District offers sports and multi-purpose fields, playground areas, outdoor courts, 25-yard indoor pool, tennis courts and gymnasium space. Public access to these facilities is limited to times when school is not in session or there are no competing demands for use. The District serves as the primary provider of indoor recreational space for the community. In 2005 the Wenatchee High School Athletic Department received 187 requests for gym use between September and April for 11 gyms. Cooperating with schools to develop, manage and maintain recreational facilities for use by the general public increases the community’s total recreation opportunity.

Wenatchee Valley Sports Council
The Wenatchee School District, Wenatchee Valley College, Wenatchee Parks and Recreation Department, individual sport organizations, and the City of East Wenatchee have formed a Wenatchee Valley Sports Council to serve as the community’s catalyst to attract and promote sports and sports-related activities. The Wenatchee Valley Sports Council (WVSC), which currently exists as a functioning coordinated team with comprehensive representation, could work to focus on coordinated scheduling discussions, partnership projects, and capital improvement projects.

Wenatchee Valley College
Wenatchee Valley College offers a wide range of indoor and outdoor recreation facilities. The outdoor sports complex with the Paul Thomas Sr. Baseball Stadium is fully lighted with 1200 seats. It also serves as the home for the Wenatchee AppleSox, a semi-professional baseball team. All of the field facilities are shared with local community groups such as AAU, Babe Ruth, Little League and Wenatchee Youth Soccer. WVC has tennis courts, meeting rooms and conference facilities plus an auditorium with fixed seating. The campus is home to the Smith Gymnasium and two Paul Thomas Sr. racquetball courts and Paul Scean Fitness Center and a free weights room.

Wenatchee Museum & Cultural Center
The Wenatchee Museum and Cultural Center serves as a City department under the authority of the Mayor. It operates in partnership between the City of Wenatchee and the private Wenatchee Valley Museum Association. The museum provides group tours, a research library, museum store, feature exhibits, collections, school tours, summer programs, facility rentals and special events. An affiliate of the museum is the “Saunders Special” a mini steam train that offers fun for both kids and adults. The miniature train and Depot are located in Riverfront Park.

Greater Wenatchee Bicycle Advisory Board
The Greater Wenatchee Bicycle Advisory Board works with the City of Wenatchee Public Works and Community Development Departments on non-motorized on and off street bicycle routes and trails. Bicycle efforts began in the city over twenty five years ago; however, the board formed and has been active at monthly meetings since 1996. Bicycle improvements have been realized through the dedication of citizens in concert with the City of Wenatchee. Bicycle routes and proposed bicycle routes are a part of the city’s overall comprehensive plan and referenced in the transportation element.
PARKS OPERATIONS AND MAINTENANCE – Provide a high quality and efficient level of maintenance for all park areas and facilities in Wenatchee.

Policy 1: Recognize sustainability as a part of the total consideration of acquisition and development of parks and facilities.

Policy 2: Maintain park and recreation facilities in a manner to make them safe, attractive, and a positive part of the neighborhood.

Policy 3: Use volunteers for special park maintenance projects (i.e. youth job corp., real estate agency adopted community projects, service clubs).

Policy 4: Create (or continue) the parks maintenance system that places the emphasis on the safety, comfort and satisfaction of the park users.

Policy 5: Identify opportunities for best environmental operations and maintenance practices, such as recycling.

FOOTHILL TRAILS PLAN – Develop a foothill trails plan that provides access to significant environmental features along the western foothills.

Policy 1: Work with the Wenatchee Valley Trails Committee (under the Chelan Douglas Land Trust) to implement the Foothills Trails Plan; addressing protection, expanded and developed access, trail enhancement, and/or acquisition of lands necessary for implementation of non-motorized recreational use of the foothills with connections to the Apple Capital Recreational Loop Trail.

Policy 2: Where terrain and conditions permit public access, work in partnership with the development community to provide opportunities for public connections and access points to the Wenatchee foothills trails system.

Policy 3: Create a comprehensive system of multipurpose off-road trails using alignments through public landholdings as well as cooperating private properties where appropriate.

Policy 4: Link residential neighborhoods to Foothill trails and trailhead facilities through bike and pedestrian routes.

Policy 5: Furnish trail systems with appropriate supporting trailhead improvements that include interpretive and directory signage systems, rest stops, drinking fountains, restrooms, parking and loading areas, water and other services.

Policy 6: Where appropriate, locate trailheads at or in conjunction with park sites, schools, and other community facilities to increase local area access to the trail system and reduce duplication of supporting improvements.

Policy 7: Develop trail improvements of a design and development standard that is easy to maintain and access by maintenance, security, and other appropriate personnel, equipment, and vehicles.

Policy 8: Recognize that the Wenatchee foothills are a unique *regional* recreational resource.
noxious weeds on public property and rights-of-way (especially alleys) and informing affected private landowners.

2. Public Outreach: Work with Chelan County Noxious Weed Control Board to increase public awareness and promote volunteer clean-up action.

GREEN BUILDING

Green building refers to an approach applied to the design, construction, and operation of buildings that helps mitigate adverse environmental, economic, and social impacts of buildings. For instance, in 1996, building construction and demolition contributed nearly 60 percent of all U.S. non-industrial waste. In 2002, buildings accounted for 38 percent of total carbon dioxide emissions, almost 68 percent of electricity consumption, and nearly 40 percent of total energy consumption for the nation. We spend an average of 90 percent of our time in buildings yet the air quality inside is two to five times worse than outside air (U.S. EPA). Green building practices recognize the relationship between natural and built environments and seek to minimize the use of energy, water and other natural resources; minimize waste generation; and provide a healthy, productive indoor environment.

General strategies for green building include: developing a site to preserve natural water flow, reducing construction waste, designing buildings that support good indoor air quality and the efficient use of natural resources, and using materials that are less detrimental to the environment. Benefits of green building include: reduction of waste, decreased water use, energy conservation, reduced operating and maintenance costs, improved indoor air quality, as well as improvements in employee morale, health, productivity, recruitment, retention, and public image.

Many home builder associations throughout Washington have developed green building programs for their areas. Most have a checklist that offers different green building strategies with point values assigned to each, allowing developers different ways to incorporate green techniques. A point system allows the creation of a regional certification program by rating different green buildings (e.g. one to five stars) according to how many points are achieved.

Options to consider for Green Building include:

1. **Incentives.** Providing incentives for new/redevelopment to use green building techniques could introduce the concept to the community and economy in a non-regulatory manner.

2. **Public Projects.** The City government can lead the way in green building for our area by requiring all new public projects to employ green building techniques. This would provide locally successful examples, demonstrate to the community that the City cares about the urban and natural environment, and promote green building-related local industries.

3. **Green Building Program.** Work with the local home builders, realtors, and environmental associations/groups in developing a regional green building certification program.

GREEN BUILDING – Integrate natural and developed environments to create a sustainable urban community.

Policy 1: Create informational documents with green building methods and local resources to aid new development in utilizing “green” techniques.

Policy 2: Become a leader in sustainable development by requiring all new public development to employ green building techniques.

Policy 3: Create incentives for the voluntary application of green building methods in the private sector.

Policy 4: Working in partnership with local building, realtor and environmental groups, create a local, voluntary green building rating and certification program for new and remodel development.

Policy 5: Work with the regional waste recycling company to create a construction/demolition recycling program to divert construction and demolition waste from the regional landfill.

FOOTHILLS – Protect the wide range of functions provided by the foothills, including natural open space, wildlife habitat, residential development, recreation and scenic vistas.

Policy 1: New subdivisions and development near the foothills shall plan for connections to the foothills trail system as identified in the Foothills Trail Plan.

Policy 2: Protect and enhance the existing foothills open space and trail system.

Policy 3: The city shall participate with a local non-profit in developing and maintaining the foothills trail system.

Policy 4: Explore developing effective incentives for private landowners in the foothills to contribute to the open space and trail system.
APPENDIX D
WENATCHEE CAMPUS
CLASSROOM UTILIZATION STUDY
FALL QUARTER 2011
<table>
<thead>
<tr>
<th>BLDG</th>
<th>ROOM</th>
<th>ITEM#</th>
<th>DEPT</th>
<th>CRS</th>
<th>TITLE</th>
<th>CR DAYS</th>
<th>STIME</th>
<th>ETIME</th>
<th>START</th>
<th>END</th>
<th>CAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLM</td>
<td>9100</td>
<td>2226</td>
<td>HUM&</td>
<td>101</td>
<td>Intro to Humanities</td>
<td>5 DAILY</td>
<td>8:00 AM</td>
<td>9:00 AM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>BLM</td>
<td>9100</td>
<td>3532</td>
<td>PEH</td>
<td>283</td>
<td>Sports Nutr</td>
<td>3 MWF</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>BLM</td>
<td>9100</td>
<td>0962</td>
<td>CHEM</td>
<td>106</td>
<td>Drugs in Society</td>
<td>5 DAILY</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>BLM</td>
<td>9100</td>
<td>2242</td>
<td>LATN</td>
<td>101</td>
<td>Latin I</td>
<td>5 DAILY</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>BLM</td>
<td>9100</td>
<td>4012</td>
<td>SPAN&</td>
<td>121</td>
<td>Spanish I</td>
<td>5 DAILY</td>
<td>12:00 PM</td>
<td>1:00 PM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>BLM</td>
<td>9100</td>
<td>0742</td>
<td>BIOL&</td>
<td>211</td>
<td>Majors Cell</td>
<td>5 MTW</td>
<td>2:00 PM</td>
<td>3:00 PM</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>BLM</td>
<td>9100</td>
<td>0762</td>
<td>BIOL&</td>
<td>211</td>
<td>Majors Cell</td>
<td>5 MTW</td>
<td>2:00 PM</td>
<td>3:00 PM</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>BLM</td>
<td>9100</td>
<td>3472</td>
<td>PEH</td>
<td>180</td>
<td>Personal Wellness</td>
<td>3 MW</td>
<td>5:30 PM</td>
<td>7:00 PM</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>BLM</td>
<td>9100</td>
<td>5262</td>
<td>PEH</td>
<td>180</td>
<td>Personal Wellness</td>
<td>3 T</td>
<td>ARR</td>
<td>ARR</td>
<td></td>
<td></td>
<td>35</td>
</tr>
</tbody>
</table>

Required class meetings are on Tuesdays, 9/27, 10/18, 11/8, 12/6 from 5:30-7 p.m.
<table>
<thead>
<tr>
<th>BLDG</th>
<th>ROOM</th>
<th>ITEM#</th>
<th>DEPT</th>
<th>CRS</th>
<th>TITLE</th>
<th>CR</th>
<th>DAYS</th>
<th>STIME</th>
<th>ETIME</th>
<th>START</th>
<th>END</th>
<th>CAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTJ</td>
<td>8030B</td>
<td>0212</td>
<td>AGRI</td>
<td>162</td>
<td>Intro to Soils</td>
<td>3</td>
<td>DAILY</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td>10/24/11</td>
<td>12/15/11</td>
<td>30</td>
</tr>
<tr>
<td>BTJ</td>
<td>8030B</td>
<td>0202</td>
<td>AGRI</td>
<td>161</td>
<td>Intro Plant Science</td>
<td>2</td>
<td>DAILY</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td>9/26/11</td>
<td>10/21/11</td>
<td>30</td>
</tr>
<tr>
<td>BTJ</td>
<td>8030B</td>
<td>1542</td>
<td>ENGL</td>
<td>090</td>
<td>Basic Engl Structure</td>
<td>5</td>
<td>DAILY</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>BTJ</td>
<td>8030B</td>
<td>0232</td>
<td>AGRI</td>
<td>261</td>
<td>Plant Science</td>
<td>5</td>
<td>DAILY</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>BTJ</td>
<td>8030B</td>
<td>3842</td>
<td>READ</td>
<td>100</td>
<td>Tech Reading</td>
<td>5</td>
<td>DAILY</td>
<td>12:00 PM</td>
<td>1:00 PM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>BTJ</td>
<td>8030B</td>
<td>1062</td>
<td>CJ</td>
<td>101</td>
<td>Intro Crim Just</td>
<td>5</td>
<td>DAILY</td>
<td>3:00 PM</td>
<td>4:00 PM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>BTJ</td>
<td>8030B</td>
<td>1092</td>
<td>CJ</td>
<td>210</td>
<td>Intro Corrections</td>
<td>5</td>
<td>DAILY</td>
<td>4:00 PM</td>
<td>5:00 PM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>BTJ</td>
<td>8030B</td>
<td>1096</td>
<td>CJ</td>
<td>262</td>
<td>CJ Interpersonal Com</td>
<td>5</td>
<td>MW</td>
<td>5:00 PM</td>
<td>7:30 PM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>BTJ</td>
<td>8030B</td>
<td>2167</td>
<td>HIST&</td>
<td>147</td>
<td>US History II</td>
<td>5</td>
<td>TTh</td>
<td>5:30 PM</td>
<td>7:45 PM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>BTJ</td>
<td>8039B</td>
<td>1812</td>
<td>ENGL &101 English Comp I</td>
<td>5 DAILY</td>
<td>7:00 AM</td>
<td>8:00 AM</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTJ</td>
<td>8039B</td>
<td>1612</td>
<td>ENGL</td>
<td>097</td>
<td>Comp: Paragraph</td>
<td>5</td>
<td>DAILY</td>
<td>8:00 AM</td>
<td>9:00 AM</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>BTJ</td>
<td>8039B</td>
<td>1632</td>
<td>ENGL</td>
<td>097</td>
<td>Comp: Paragraph</td>
<td>5</td>
<td>DAILY</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>BTJ</td>
<td>8039B</td>
<td>0886</td>
<td>BUS</td>
<td>230</td>
<td>Intro to Entrepreneur</td>
<td>5</td>
<td>DAILY</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>BTJ</td>
<td>8039B</td>
<td>1862</td>
<td>ENGL &101 English Comp I</td>
<td>5 DAILY</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTJ</td>
<td>8039B</td>
<td>1666</td>
<td>ENGL</td>
<td>097</td>
<td>Comp: Paragraph</td>
<td>5</td>
<td>DAILY</td>
<td>12:00 PM</td>
<td>1:00 PM</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>BTJ</td>
<td>8039B</td>
<td>0342</td>
<td>ART</td>
<td>132</td>
<td>3D Digital Design 1</td>
<td>5</td>
<td>MW</td>
<td>4:15 PM</td>
<td>7:15 PM</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>BTJ</td>
<td>8039B</td>
<td>0332</td>
<td>ART</td>
<td>130</td>
<td>Graphic Design Tech</td>
<td>5</td>
<td>MW</td>
<td>1:15 PM</td>
<td>4:15 PM</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>BTJ</td>
<td>8042B</td>
<td>0242</td>
<td>AGRI</td>
<td>264</td>
<td>Post Harvet Tech</td>
<td>5</td>
<td>Th</td>
<td>1:00 PM</td>
<td>4:00 PM</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>BTJ</td>
<td>8042B</td>
<td>3032</td>
<td>NATR</td>
<td>113</td>
<td>NCW Plant ID</td>
<td>3</td>
<td>Th</td>
<td>5:30 PM</td>
<td>7:30 PM</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>BTJ</td>
<td>8042B</td>
<td>3042</td>
<td>NATR</td>
<td>114</td>
<td>Animal Identification</td>
<td>3</td>
<td>Th</td>
<td>5:30 PM</td>
<td>7:30 PM</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>BTJ</td>
<td>8042B</td>
<td>3022</td>
<td>NATR</td>
<td>103</td>
<td>Field Safety & Prep</td>
<td>3</td>
<td>W</td>
<td>5:30 PM</td>
<td>7:30 PM</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>EFS</td>
<td>3001B</td>
<td>2722</td>
<td>MLT</td>
<td>214</td>
<td>Hemat Lab</td>
<td>3</td>
<td>MT</td>
<td>1:00 PM</td>
<td>4:00 PM</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>EFS</td>
<td>3001B</td>
<td>2662</td>
<td>MLT</td>
<td>100</td>
<td>Intro to MLT</td>
<td>1</td>
<td>F</td>
<td>2:00 PM</td>
<td>4:30 PM</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>EFS</td>
<td>3002B</td>
<td>2062</td>
<td>GEO&</td>
<td>101</td>
<td>Intro to Geology</td>
<td>5</td>
<td>TTh</td>
<td>10:00 AM</td>
<td>12:00 PM</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>EFS</td>
<td>3002B</td>
<td>5122</td>
<td>ASTR&</td>
<td>101</td>
<td>Intro to Astronomy</td>
<td>5</td>
<td>T</td>
<td>6:30 PM</td>
<td>9:00 PM</td>
<td>Dates</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Required class meetings are Tuesday 9/27; 10/4, 18; 11/15; 12/6 from 6:30-9 p.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IP, 11-21-11
<table>
<thead>
<tr>
<th>BLDG</th>
<th>ROOM</th>
<th>ITEM#</th>
<th>DEPT</th>
<th>CRS</th>
<th>TITLE</th>
<th>CR</th>
<th>DAYS</th>
<th>STIME</th>
<th>ETIME</th>
<th>START</th>
<th>END</th>
<th>CAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFS</td>
<td>3016</td>
<td>3592</td>
<td>PHIL&</td>
<td>106</td>
<td>Intro to Logic</td>
<td>5</td>
<td>DAILY</td>
<td>8:00 AM</td>
<td>9:00 AM</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFS</td>
<td>3016</td>
<td>1942</td>
<td>ENGL&</td>
<td>111</td>
<td>Intro to Literature</td>
<td>5</td>
<td>DAILY</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFS</td>
<td>3016</td>
<td>1952</td>
<td>ENGL&</td>
<td>111</td>
<td>Intro to Literature</td>
<td>5</td>
<td>DAILY</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFS</td>
<td>3016</td>
<td>1712</td>
<td>ENGL</td>
<td>202</td>
<td>Comp:Critical Analysis</td>
<td>5</td>
<td>DAILY</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFS</td>
<td>3016</td>
<td>4072</td>
<td>THTR</td>
<td>170</td>
<td>Prod & Admin</td>
<td>0</td>
<td>TTh</td>
<td>1:30 PM</td>
<td>3:45 PM</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFS</td>
<td>3017</td>
<td>0982</td>
<td>CHEM&</td>
<td>121</td>
<td>LAB</td>
<td>0</td>
<td>F</td>
<td>8:00 AM</td>
<td>10:00 AM</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFS</td>
<td>3017</td>
<td>0992</td>
<td>CHEM&</td>
<td>121</td>
<td>LAB</td>
<td>0</td>
<td>W</td>
<td>8:00 AM</td>
<td>10:00 AM</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFS</td>
<td>3017</td>
<td>1012</td>
<td>CHEM&</td>
<td>121</td>
<td>LAB</td>
<td>0</td>
<td>F</td>
<td>12:00 PM</td>
<td>2:00 PM</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFS</td>
<td>3017</td>
<td>0972</td>
<td>CHEM&</td>
<td>110</td>
<td>LAB</td>
<td>0</td>
<td>M</td>
<td>2:00 PM</td>
<td>4:00 PM</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFS</td>
<td>3017</td>
<td>1032</td>
<td>CHEM&</td>
<td>161</td>
<td>LAB</td>
<td>0</td>
<td>T</td>
<td>2:00 PM</td>
<td>4:00 PM</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFS</td>
<td>3017</td>
<td>1042</td>
<td>CHEM&</td>
<td>161</td>
<td>LAB</td>
<td>0</td>
<td>Th</td>
<td>2:00 PM</td>
<td>4:00 PM</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFS</td>
<td>3017</td>
<td>1002</td>
<td>CHEM&</td>
<td>121</td>
<td>LAB</td>
<td>0</td>
<td>W</td>
<td>2:00 PM</td>
<td>4:00 PM</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFS</td>
<td>3017</td>
<td>1052</td>
<td>CHEM&</td>
<td>261</td>
<td>LAB</td>
<td>0</td>
<td>TTh</td>
<td>4:30 PM</td>
<td>6:30 PM</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFS</td>
<td>3017</td>
<td>1022</td>
<td>CHEM&</td>
<td>121</td>
<td>LAB</td>
<td>0</td>
<td>W</td>
<td>6:30 PM</td>
<td>8:30 PM</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLD</td>
<td>3422</td>
<td>PEH</td>
<td>150</td>
<td>Beg Tennis</td>
<td>1</td>
<td>TTh</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYM</td>
<td>4007</td>
<td>3352</td>
<td>PEH</td>
<td>119</td>
<td>Tai Chi</td>
<td>1</td>
<td>TTh</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYM</td>
<td>4007</td>
<td>3342</td>
<td>PEH</td>
<td>118</td>
<td>Beg Karate</td>
<td>1</td>
<td>TTh</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYM</td>
<td>4007</td>
<td>3392</td>
<td>PEH</td>
<td>123</td>
<td>Yoga/Pilates</td>
<td>2</td>
<td>MTWTh</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYM</td>
<td>4007</td>
<td>3382</td>
<td>PEH</td>
<td>122</td>
<td>Yoga</td>
<td>1</td>
<td>MW</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYM</td>
<td>4007</td>
<td>3372</td>
<td>PEH</td>
<td>121</td>
<td>Pilates</td>
<td>1</td>
<td>TTh</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYM</td>
<td>4007</td>
<td>3242</td>
<td>PEH</td>
<td>102</td>
<td>Body Cond:Step Aer</td>
<td>2</td>
<td>MTWTh</td>
<td>12:00 PM</td>
<td>1:00 PM</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYM</td>
<td>4007</td>
<td>3222</td>
<td>PEH</td>
<td>101</td>
<td>Body Cond:Step Aer</td>
<td>1</td>
<td>MW</td>
<td>12:00 PM</td>
<td>1:00 PM</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYM</td>
<td>4007</td>
<td>3232</td>
<td>PEH</td>
<td>101</td>
<td>Body Cond:Step Aer</td>
<td>1</td>
<td>TTh</td>
<td>12:00 PM</td>
<td>1:00 PM</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYM</td>
<td>4021</td>
<td>3402</td>
<td>PEH</td>
<td>126</td>
<td>Beg Racquetball</td>
<td>1</td>
<td>TTh</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYM</td>
<td>4021</td>
<td>3412</td>
<td>PEH</td>
<td>126</td>
<td>Beg Racquetball</td>
<td>1</td>
<td>TTh</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYM</td>
<td>4021</td>
<td>3362</td>
<td>PEH</td>
<td>120</td>
<td>Beg Fencing</td>
<td>1</td>
<td>MW</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYM</td>
<td>4024</td>
<td>3522</td>
<td>PEH</td>
<td>262</td>
<td>Fitness Lab</td>
<td>2</td>
<td>ARR</td>
<td>ARR</td>
<td>ARR</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYM</td>
<td>4024</td>
<td>3512</td>
<td>PEH</td>
<td>261</td>
<td>Fitness Lab</td>
<td>1</td>
<td>ARR</td>
<td>ARR</td>
<td>ARR</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYM</td>
<td>4024</td>
<td>3442</td>
<td>PEH</td>
<td>162</td>
<td>Fitness Lab</td>
<td>2</td>
<td>ARR</td>
<td>ARR</td>
<td>ARR</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYM</td>
<td>4024</td>
<td>3432</td>
<td>PEH</td>
<td>161</td>
<td>Fitness Lab</td>
<td>1</td>
<td>ARR</td>
<td>ARR</td>
<td>ARR</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYM</td>
<td>4025</td>
<td>3312</td>
<td>PEH</td>
<td>104</td>
<td>Body Cond: Wt Trng</td>
<td>2</td>
<td>MTWTh</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYM</td>
<td>4025</td>
<td>3252</td>
<td>PEH</td>
<td>103</td>
<td>Body Cond: Wt Trng</td>
<td>1</td>
<td>MW</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYM</td>
<td>4025</td>
<td>3262</td>
<td>PEH</td>
<td>103</td>
<td>Body Cond: Wt Trng</td>
<td>1</td>
<td>TTh</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYM</td>
<td>4025</td>
<td>3322</td>
<td>PEH</td>
<td>104</td>
<td>Body Cond: Wt Trng</td>
<td>2</td>
<td>MTWTh</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYM</td>
<td>4025</td>
<td>3272</td>
<td>PEH</td>
<td>103</td>
<td>Body Cond: Wt Trng</td>
<td>1</td>
<td>MW</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYM</td>
<td>4025</td>
<td>3282</td>
<td>PEH</td>
<td>103</td>
<td>Body Cond: Wt Trng</td>
<td>1</td>
<td>TTh</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYM</td>
<td>4025</td>
<td>3332</td>
<td>PEH</td>
<td>104</td>
<td>Body Cond: Wt Trng</td>
<td>2</td>
<td>MTWTh</td>
<td>1:00 PM</td>
<td>2:00 PM</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYM</td>
<td>4025</td>
<td>3292</td>
<td>PEH</td>
<td>103</td>
<td>Body Cond: Wt Trng</td>
<td>1</td>
<td>MW</td>
<td>1:00 PM</td>
<td>2:00 PM</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYM</td>
<td>4025</td>
<td>3302</td>
<td>PEH</td>
<td>103</td>
<td>Body Cond: Wt Trng</td>
<td>1</td>
<td>TTh</td>
<td>1:00 PM</td>
<td>2:00 PM</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INT</td>
<td>7501</td>
<td>1452</td>
<td>ELEC</td>
<td>125</td>
<td>Wiring Diag & Schem</td>
<td>5</td>
<td>TTh</td>
<td>8:30 AM</td>
<td>12:00 PM</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INT</td>
<td>7501</td>
<td>1442</td>
<td>ELEC</td>
<td>115</td>
<td>Applied Electricity</td>
<td>5</td>
<td>TTh</td>
<td>1:00 PM</td>
<td>4:30 PM</td>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Class will meet here only on Nov. 15, 17 22 & Dec. 6.
<table>
<thead>
<tr>
<th>BLDG</th>
<th>ROOM</th>
<th>ITEM#</th>
<th>DEPT</th>
<th>CRS</th>
<th>TITLE</th>
<th>CR</th>
<th>DAYS</th>
<th>STIME</th>
<th>ETIME</th>
<th>START</th>
<th>END</th>
<th>CAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT</td>
<td>7501</td>
<td>1462</td>
<td>ELTRO</td>
<td>101</td>
<td>Basic DC-1</td>
<td>5</td>
<td>MW</td>
<td>1:00 PM</td>
<td>3:30 PM</td>
<td>1:00 PM</td>
<td>3:30 PM</td>
<td>25</td>
</tr>
<tr>
<td>INT</td>
<td>7501</td>
<td>1462</td>
<td>ELTRO</td>
<td>101</td>
<td>Basic DC-1</td>
<td>0</td>
<td>MW</td>
<td>3:30 PM</td>
<td>4:30 PM</td>
<td>1:00 PM</td>
<td>3:30 PM</td>
<td>25</td>
</tr>
<tr>
<td>INT</td>
<td>7501</td>
<td>1472</td>
<td>ELTRO</td>
<td>202</td>
<td>Intro to the NEC</td>
<td>2</td>
<td>F</td>
<td>8:30 AM</td>
<td>6:30 PM</td>
<td>dates</td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

Class meets 11/4 and 11/18.
<table>
<thead>
<tr>
<th>BLDG</th>
<th>ROOM</th>
<th>ITEM#</th>
<th>DEPT</th>
<th>CRS</th>
<th>TITLE</th>
<th>CR</th>
<th>DAYS</th>
<th>STIME</th>
<th>ETIME</th>
<th>START</th>
<th>END</th>
<th>CAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC</td>
<td>0115</td>
<td>2802</td>
<td>MUS</td>
<td>125</td>
<td>Piano Class Instructor</td>
<td>1</td>
<td>TTh</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td>8</td>
</tr>
<tr>
<td>MAC</td>
<td>0115</td>
<td>2932</td>
<td>MUS</td>
<td>221</td>
<td>Piano Class Instructor</td>
<td>1</td>
<td>TTh</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td>0</td>
</tr>
<tr>
<td>MAC</td>
<td>0115</td>
<td>2812</td>
<td>MUS</td>
<td>125</td>
<td>Piano Class Instructor</td>
<td>1</td>
<td>TTh</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td>8</td>
</tr>
<tr>
<td>PAC</td>
<td>4072</td>
<td>THTR</td>
<td>170</td>
<td></td>
<td>Prod & Admin</td>
<td>5</td>
<td>TTh</td>
<td>1:30 PM</td>
<td>3:45 PM</td>
<td>11/15/11</td>
<td>11/15/11</td>
<td>20</td>
</tr>
<tr>
<td>PAC</td>
<td>4082</td>
<td>THTR</td>
<td>265</td>
<td></td>
<td>Acting II</td>
<td>5</td>
<td>TTh</td>
<td>5:30 PM</td>
<td>7:45 PM</td>
<td>11/15/11</td>
<td>11/15/11</td>
<td></td>
</tr>
<tr>
<td>PAC</td>
<td>4062</td>
<td>THTR</td>
<td>165</td>
<td></td>
<td>Acting I</td>
<td>5</td>
<td>TTh</td>
<td>5:30 PM</td>
<td>7:45 PM</td>
<td>11/15/11</td>
<td>11/15/11</td>
<td>20</td>
</tr>
</tbody>
</table>

Class will meet on Nov. 15, 17, 22 and Dec. 6 in EFS 3016.

Classes will meet on Nov. 15, 17, 22 in EFS 3016 and Dec. 6 in VTC 5015A.
<table>
<thead>
<tr>
<th>BLDG</th>
<th>ROOM</th>
<th>ITEM#</th>
<th>DEPT</th>
<th>CRS</th>
<th>TITLE</th>
<th>CR</th>
<th>DAYS</th>
<th>STIME</th>
<th>ETIME</th>
<th>START</th>
<th>END</th>
<th>CAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SXT</td>
<td>6007</td>
<td>6752</td>
<td>CED</td>
<td>053</td>
<td>Excel 2007 Level 1</td>
<td>0</td>
<td>TTh</td>
<td>6:00 PM</td>
<td>8:00 PM</td>
<td>10/4/11</td>
<td>10/13/11</td>
<td>14</td>
</tr>
<tr>
<td>SXT</td>
<td>6007</td>
<td>6762</td>
<td>CED</td>
<td>497</td>
<td>Excel 2007 Level 2</td>
<td>0</td>
<td>TTh</td>
<td>6:00 PM</td>
<td>8:00 PM</td>
<td>10/18/11</td>
<td>10/27/11</td>
<td>14</td>
</tr>
<tr>
<td>SXT</td>
<td>6007</td>
<td>6772</td>
<td>CED</td>
<td>493</td>
<td>Excel 2007 Level 3</td>
<td>0</td>
<td>T</td>
<td>6:00 PM</td>
<td>9:00 PM</td>
<td>11/1/11</td>
<td>11/10/11</td>
<td>14</td>
</tr>
<tr>
<td>SXT</td>
<td>6008</td>
<td>1732</td>
<td>ENGL</td>
<td>203</td>
<td>Comp:Research</td>
<td>5</td>
<td>DAILY</td>
<td>8:00 AM</td>
<td>9:00 AM</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SXT</td>
<td>6008</td>
<td>1772</td>
<td>ENGL &</td>
<td>101</td>
<td>English Comp I</td>
<td>5</td>
<td>DAILY</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>SXT</td>
<td>6008</td>
<td>1842</td>
<td>ENGL &</td>
<td>101</td>
<td>English Comp I</td>
<td>5</td>
<td>DAILY</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>SXT</td>
<td>6008</td>
<td>0622</td>
<td>BCT</td>
<td>111</td>
<td>Business English</td>
<td>5</td>
<td>DAILY</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>SXT</td>
<td>6008</td>
<td>1162</td>
<td>CSC</td>
<td>201</td>
<td>Programming Fundamentals</td>
<td>5</td>
<td>DAILY</td>
<td>12:00 PM</td>
<td>1:00 PM</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>SXT</td>
<td>6008</td>
<td>1912</td>
<td>CSC</td>
<td>101</td>
<td>English Comp I</td>
<td>5</td>
<td>DAILY</td>
<td>1:00 PM</td>
<td>2:00 PM</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>SXT</td>
<td>6008</td>
<td>1092</td>
<td>CTS</td>
<td>120</td>
<td>Intro to Networking</td>
<td>5</td>
<td>DAILY</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>SXT</td>
<td>6008</td>
<td>1182</td>
<td>CTS</td>
<td>115</td>
<td>Computer Software</td>
<td>5</td>
<td>DAILY</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>SXT</td>
<td>6008</td>
<td>1172</td>
<td>CTS</td>
<td>110</td>
<td>Computer Hardware</td>
<td>5</td>
<td>DAILY</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>SXT</td>
<td>6008</td>
<td>1212</td>
<td>CTS</td>
<td>222</td>
<td>Security Fundamentals</td>
<td>5</td>
<td>DAILY</td>
<td>1:00 PM</td>
<td>2:00 PM</td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>SXT</td>
<td>6011</td>
<td>3992</td>
<td>SOC&</td>
<td>201</td>
<td>Soc Prob</td>
<td>5</td>
<td>DAILY</td>
<td>8:00 AM</td>
<td>9:00 AM</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SXT</td>
<td>6011</td>
<td>6592</td>
<td>FLG</td>
<td>027</td>
<td>Flagger Training</td>
<td>0</td>
<td>Sa</td>
<td>8:00 AM</td>
<td>4:00 PM</td>
<td>9/24/11</td>
<td>9/24/11</td>
<td>30</td>
</tr>
<tr>
<td>SXT</td>
<td>6011</td>
<td>0102</td>
<td>ACCT &</td>
<td>102</td>
<td>Prac Acct I</td>
<td>5</td>
<td>DAILY</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>SXT</td>
<td>6011</td>
<td>3572</td>
<td>PHIL&</td>
<td>101</td>
<td>Intro to Philosophy</td>
<td>5</td>
<td>DAILY</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>SXT</td>
<td>6011</td>
<td>1742</td>
<td>ENGL</td>
<td>215</td>
<td>Fantasy Fiction</td>
<td>5</td>
<td>DAILY</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>SXT</td>
<td>6011</td>
<td>3692</td>
<td>PSYC&</td>
<td>100</td>
<td>Gen Psychology</td>
<td>5</td>
<td>DAILY</td>
<td>12:00 PM</td>
<td>1:00 PM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>SXT</td>
<td>6011</td>
<td>3982</td>
<td>SOC&</td>
<td>101</td>
<td>Intro to Soc</td>
<td>5</td>
<td>T</td>
<td>5:30 PM</td>
<td>7:45 PM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>SXT</td>
<td>6011</td>
<td>0642</td>
<td>BCT</td>
<td>116</td>
<td>Prof Work Relations</td>
<td>3</td>
<td>W</td>
<td>5:30 PM</td>
<td>8:15 PM</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>SXT</td>
<td>6017</td>
<td>0122</td>
<td>ACCT &</td>
<td>201</td>
<td>Prin of Acctg I</td>
<td>5</td>
<td>DAILY</td>
<td>8:00 AM</td>
<td>9:00 AM</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SXT</td>
<td>6017</td>
<td>3452</td>
<td>PEH</td>
<td>180</td>
<td>Personal Wellness</td>
<td>3</td>
<td>MWF</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>SXT</td>
<td>6017</td>
<td>3942</td>
<td>SOC</td>
<td>151</td>
<td>Soc of Race</td>
<td>5</td>
<td>DAILY</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>SXT</td>
<td>6017</td>
<td>0892</td>
<td>BUS</td>
<td>240</td>
<td>Prin of Mgmt</td>
<td>5</td>
<td>DAILY</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>SXT</td>
<td>6017</td>
<td>0132</td>
<td>ACCT &</td>
<td>201</td>
<td>Prin of Acctg I</td>
<td>5</td>
<td>DAILY</td>
<td>12:00 PM</td>
<td>1:00 PM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>SXT</td>
<td>6017</td>
<td>2182</td>
<td>HIST &</td>
<td>214</td>
<td>Pacific NW Hist</td>
<td>5</td>
<td>MW</td>
<td>5:30 PM</td>
<td>7:45 PM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>SXT</td>
<td>6017</td>
<td>5112</td>
<td>ASL &</td>
<td>121</td>
<td>Am Sign Language I</td>
<td>5</td>
<td>T</td>
<td>5:30 PM</td>
<td>7:45 PM</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>SXT</td>
<td>6017</td>
<td>6442</td>
<td>CED</td>
<td>141</td>
<td>Professional Bartend</td>
<td>0</td>
<td>Th</td>
<td>6:00 PM</td>
<td>9:00 PM</td>
<td>10/27/11</td>
<td>10/27/11</td>
<td>15</td>
</tr>
<tr>
<td>SXT</td>
<td>6019</td>
<td>3662</td>
<td>PSYC&</td>
<td>100</td>
<td>Gen Psychology</td>
<td>5</td>
<td>DAILY</td>
<td>8:00 AM</td>
<td>9:00 AM</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SXT</td>
<td>6019</td>
<td>1402</td>
<td>ECON &</td>
<td>201</td>
<td>Micro Economics</td>
<td>5</td>
<td>DAILY</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>SXT</td>
<td>6019</td>
<td>6442</td>
<td>CED</td>
<td>141</td>
<td>Professional Bartend</td>
<td>0</td>
<td>Sa</td>
<td>9:00 AM</td>
<td>4:30 PM</td>
<td>10/29/11</td>
<td>10/29/11</td>
<td>15</td>
</tr>
<tr>
<td>SXT</td>
<td>6019</td>
<td>1376</td>
<td>ECON &</td>
<td>101</td>
<td>Intro to Economics</td>
<td>5</td>
<td>DAILY</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>SXT</td>
<td>6019</td>
<td>1382</td>
<td>ECON</td>
<td>101</td>
<td>Intro to Economics</td>
<td>5</td>
<td>DAILY</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>SXT</td>
<td>6019</td>
<td>1392</td>
<td>ECON</td>
<td>101</td>
<td>Intro to Economics</td>
<td>5</td>
<td>DAILY</td>
<td>12:00 PM</td>
<td>1:00 PM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>SXT</td>
<td>6019</td>
<td>0112</td>
<td>ACCT &</td>
<td>102</td>
<td>Prac Acct I</td>
<td>5</td>
<td>DAILY</td>
<td>1:00 PM</td>
<td>2:00 PM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>SXT</td>
<td>6019</td>
<td>6452</td>
<td>CED</td>
<td>142</td>
<td>Bartender/Server License</td>
<td>0</td>
<td>Sa</td>
<td>1:00 PM</td>
<td>4:30 PM</td>
<td>10/29/11</td>
<td>10/29/11</td>
<td>15</td>
</tr>
</tbody>
</table>

Offered in conjunction with Professional Bartending

SXT 6019 3752 PSYC& 200 Lifespan Psych | 5 | MW | 5:30 PM| 7:45 PM| | | 35 |
| SXT 6019 3702 PSYC& 100 Gen Psychology | 5 | TTh | 5:30 PM| 7:45 PM| | | 35 |
| SXT 6019 6442 CED 141 Professional Bartend | 0 | F | 6:00 PM| 9:00 PM| 10/28/11| 10/28/11| 15 |

SXT 6023 1482 ELTRO 210 Prog Software for PL| 5 | MW | 3:30 PM| 7:00 PM| | | 20 |

IP, 11-21-11
Page 6
<table>
<thead>
<tr>
<th>BLDG</th>
<th>ROOM</th>
<th>ITEM#</th>
<th>DEPT</th>
<th>CRS</th>
<th>TITLE</th>
<th>CR</th>
<th>DAYS</th>
<th>STIME</th>
<th>ETIME</th>
<th>START</th>
<th>END</th>
<th>CAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SXT</td>
<td>6023</td>
<td>1492</td>
<td>ELTRO</td>
<td>223</td>
<td>Tag PLC Prog</td>
<td>3</td>
<td>MW</td>
<td>7:00 PM</td>
<td>9:30 PM</td>
<td>20</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>SXT</td>
<td>6024</td>
<td>1802</td>
<td>ENGL&</td>
<td>101</td>
<td>English Comp I</td>
<td>5</td>
<td>MW, Th</td>
<td>6:00 PM</td>
<td>8:00 PM</td>
<td>35</td>
<td>11/15</td>
<td>35</td>
</tr>
<tr>
<td>SXT</td>
<td>6024</td>
<td>0602</td>
<td>BCT</td>
<td>105</td>
<td>Computer Applications</td>
<td>5</td>
<td>DAILY</td>
<td>7:00 AM</td>
<td>9:00 AM</td>
<td>24</td>
<td>11/15</td>
<td>24</td>
</tr>
<tr>
<td>SXT</td>
<td>6024</td>
<td>0662</td>
<td>BCT</td>
<td>128</td>
<td>Business Math</td>
<td>5</td>
<td>MW, Th</td>
<td>6:00 PM</td>
<td>8:00 PM</td>
<td>0</td>
<td>11/15</td>
<td>0</td>
</tr>
<tr>
<td>SXT</td>
<td>6024</td>
<td>0632</td>
<td>BCT</td>
<td>116</td>
<td>Prof Work Relations</td>
<td>3</td>
<td>TTh</td>
<td>6:00 PM</td>
<td>8:00 PM</td>
<td>0</td>
<td>11/15</td>
<td>0</td>
</tr>
<tr>
<td>SXT</td>
<td>6024</td>
<td>1922</td>
<td>ENGL&</td>
<td>101</td>
<td>English Comp I</td>
<td>5</td>
<td>TTh</td>
<td>6:00 PM</td>
<td>8:00 PM</td>
<td>0</td>
<td>11/15</td>
<td>0</td>
</tr>
<tr>
<td>VTC</td>
<td>5015A</td>
<td>4082</td>
<td>THTR</td>
<td>265</td>
<td>Acting II</td>
<td>0</td>
<td>TTH</td>
<td>6:30 PM</td>
<td>8:30 PM</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>VTC</td>
<td>5015A</td>
<td>4062</td>
<td>THTR</td>
<td>165</td>
<td>Acting I</td>
<td>0</td>
<td>TTH</td>
<td>6:30 PM</td>
<td>8:30 PM</td>
<td>0</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

Classes 165 & 265 only meet on Dec. 6 in this room.

WEL 1011H 4002 SPAN& 121 Spanish I 5 DAILY 9:00 AM 10:00 AM 22
WEL 1011H 4052 SPAN& 221 Spanish IV 5 DAILY 1:00 PM 2:00 PM 20
WEL 1011H 6132 CED 769 Beginning Crochet 0 T 6:00 PM 8:00 PM 10/11/11 11/11/11 8
WEL 1011H 6142 CED 770 Continuing Crochet 0 Th 6:00 PM 8:00 PM 12/1/11 12/15/11 8
WEL 1025 4442 ABE 043 Math IV 5.0 MTWTh 8:45 AM 10:00 AM 9/26/11 12/15/11 0
WEL 1025 4402 ABE 060 College Readiness 2.0 TTh 10:00 AM 11:00 AM 9/27/11 12/15/11 24
WEL 1025 4202 ESL 007 Basic Skills Computer 5.0 MTWTh 11:15 AM 12:30 PM 9/26/11 12/15/11 26
WEL 1025 4412 ABE 040 Math I 5.0 MTWTh 12:30 PM 1:45 PM 9/26/11 12/15/11 0
WEL 1025 4422 ABE 041 Math II 5.0 MTWTh 12:30 PM 1:45 PM 9/26/11 12/15/11 0
WEL 1025 4432 ABE 042 Math III 5.0 MTWTh 12:30 PM 1:45 PM 9/26/11 12/15/11 0
WEL 1025 4302 ESL 007 Basic Skills Computer 4.8 MTWTh 4:30 PM 6:00 PM 9/26/11 12/15/11 32
WEL 1025 4702 ABE 007 Basic Skills Lab 1.5 Th 6:00 PM 8:00 PM 9/26/11 12/15/11 32
WEL 1026 4222 ESL 026 Level II 10.0 MTWTh 8:45 AM 11:15 AM 9/26/11 12/15/11 0
WEL 1026 4232 ESL 027 Level III 10.0 MTWTh 8:45 AM 11:15 AM 9/26/11 12/15/11 0
WEL 1026 1662 ENGL 097 Comp: Paragraph 5 DAILY 12:00 PM 1:00 PM 9/26/11 12/15/11 24
WEL 1026 1422 EDUC 200 Intro Education 5.0 MTWTh 1:00 PM 2:05 PM 9/26/11 12/15/11 20
WEL 1026 4342 ESL 023 Level IV 4.8 MW 6:00 PM 9:00 PM 9/26/11 12/15/11 0
WEL 1026 4352 ESL 024 Level V 4.8 MW 6:00 PM 9:00 PM 9/26/11 12/15/11 0
WEL 1026 4322 ESL 021 Level II 4.8 TTh 6:00 PM 9:00 PM 9/27/11 12/15/11 0
WEL 1026 4332 ESL 022 Level III 4.8 TTh 6:00 PM 9:00 PM 9/26/11 12/15/11 0
WEL 1027 3726 PSYC& 100 Gen Psychology 5 DAILY 9:00 AM 10:00 AM 9/26/11 12/15/11 0
WEL 1027 1642 ENGL 097 Comp: Paragraph 5 DAILY 10:00 AM 11:00 AM 9/26/11 12/15/11 30
WEL 1027 0912 BUS& 101 Intro to Business 5 DAILY 11:00 AM 12:00 PM 9/26/11 12/15/11 30
WEL 1027 3912 SDS 106 Career/Life Planning 3 MWF 12:00 PM 1:00 PM 9/26/11 12/15/11 25
WEL 1027 3902 SDS 104 Stress Mgmt 3 MWF 1:00 PM 2:00 PM 9/26/11 12/15/11 25
WEL 1027 4042 SPAN& 122 Spanish II 5 MW 5:30 PM 7:45 PM 9/26/11 12/15/11 35
WEL 1027 4022 SPAN& 121 Spanish I 5 TTh 5:30 PM 7:45 PM 9/26/11 12/15/11 35
WEL 1040 3922 SDS 107 College Nav 1 Th 8:00 AM 9:00 AM 9/26/11 12/15/11 30
WEL 1040 4522 ABE 031 Reading II 5 MTWTh 10:00 AM 11:15 AM 9/26/11 12/15/11 0
WEL 1040 4532 ABE 032 Reading III 5 MTWTh 10:00 AM 11:15 AM 9/26/11 12/15/11 26
WEL 1040 4542 ABE 033 Reading IV 5 MTWTh 10:00 AM 11:15 AM 9/26/11 12/15/11 0
WEL 1040 4502 ABE 076 Adult Basic Skills Lab 5 MTWTh 12:30 PM 1:45 PM 9/26/11 12/15/11 30
WEL 1040 4602 ABE 076 Adult Basic Skills Lab 5 MTWTh 1:45 PM 3:00 PM 9/26/11 12/15/11 30
WEL 1040 4832 ABE 076 Intensive GED Prep 2 MTW 6:00 PM 9:00 PM 9/26/11 12/15/11 0
<table>
<thead>
<tr>
<th>BLDG</th>
<th>ROOM</th>
<th>ITEM#</th>
<th>DEPT</th>
<th>CRS</th>
<th>TITLE</th>
<th>CR</th>
<th>DAYS</th>
<th>STIME</th>
<th>ETIME</th>
<th>START</th>
<th>END</th>
<th>CAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEL 1040</td>
<td>4712</td>
<td>ABE 030</td>
<td>Reading I</td>
<td>2</td>
<td>MTW</td>
<td>6:00 PM</td>
<td>7:00 PM</td>
<td>9/26/11</td>
<td>12/15/11</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1040</td>
<td>4722</td>
<td>ABE 031</td>
<td>Reading II</td>
<td>2</td>
<td>MTW</td>
<td>6:00 PM</td>
<td>7:00 PM</td>
<td>9/26/11</td>
<td>12/15/11</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1040</td>
<td>4732</td>
<td>ABE 032</td>
<td>Reading III</td>
<td>2</td>
<td>MTW</td>
<td>6:00 PM</td>
<td>7:00 PM</td>
<td>9/26/11</td>
<td>12/15/11</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1040</td>
<td>4742</td>
<td>ABE 033</td>
<td>Reading IV</td>
<td>2</td>
<td>MTW</td>
<td>6:00 PM</td>
<td>7:00 PM</td>
<td>9/26/11</td>
<td>12/15/11</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1040</td>
<td>4752</td>
<td>ABE 040</td>
<td>Math I</td>
<td>2</td>
<td>MTW</td>
<td>7:00 PM</td>
<td>8:00 PM</td>
<td>9/26/11</td>
<td>12/15/11</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1040</td>
<td>4762</td>
<td>ABE 041</td>
<td>Math II</td>
<td>2</td>
<td>MTW</td>
<td>7:00 PM</td>
<td>8:00 PM</td>
<td>9/26/11</td>
<td>12/15/11</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1040</td>
<td>4772</td>
<td>ABE 042</td>
<td>Math III</td>
<td>2</td>
<td>MTW</td>
<td>7:00 PM</td>
<td>8:00 PM</td>
<td>9/26/11</td>
<td>12/15/11</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1040</td>
<td>4782</td>
<td>ABE 043</td>
<td>Math IV</td>
<td>2</td>
<td>MTW</td>
<td>7:00 PM</td>
<td>8:00 PM</td>
<td>9/26/11</td>
<td>12/15/11</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1040</td>
<td>4792</td>
<td>ABE 044</td>
<td>Writing I</td>
<td>2</td>
<td>MTW</td>
<td>8:00 PM</td>
<td>9:00 PM</td>
<td>9/26/11</td>
<td>12/15/11</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1040</td>
<td>4802</td>
<td>ABE 045</td>
<td>Writing II</td>
<td>2</td>
<td>MTW</td>
<td>8:00 PM</td>
<td>9:00 PM</td>
<td>9/26/11</td>
<td>12/15/11</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1040</td>
<td>4812</td>
<td>ABE 046</td>
<td>Writing III</td>
<td>2</td>
<td>MTW</td>
<td>8:00 PM</td>
<td>9:00 PM</td>
<td>9/26/11</td>
<td>12/15/11</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1040</td>
<td>4822</td>
<td>ABE 047</td>
<td>Writing IV</td>
<td>2</td>
<td>MTW</td>
<td>8:00 PM</td>
<td>9:00 PM</td>
<td>9/26/11</td>
<td>12/15/11</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1045</td>
<td>4242</td>
<td>ESL 028</td>
<td>Level IV</td>
<td>5</td>
<td>MTWTh</td>
<td>8:45 AM</td>
<td>10:00 AM</td>
<td>9/26/11</td>
<td>12/15/11</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1045</td>
<td>4252</td>
<td>ESL 029</td>
<td>Level V</td>
<td>5</td>
<td>MTWTh</td>
<td>8:45 AM</td>
<td>10:00 AM</td>
<td>9/26/11</td>
<td>12/15/11</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1045</td>
<td>4612</td>
<td>ABE 050</td>
<td>Writing I</td>
<td>2</td>
<td>MW</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td>9/26/11</td>
<td>12/15/11</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1045</td>
<td>6022</td>
<td>CED 278</td>
<td>Jam Time Guitar I</td>
<td>0</td>
<td>T</td>
<td>6:30 PM</td>
<td>8:00 PM</td>
<td>9/27/11</td>
<td>11/29/11</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1045</td>
<td>6032</td>
<td>CED 267</td>
<td>Jam Time Guitar II</td>
<td>0</td>
<td>W</td>
<td>6:30 PM</td>
<td>8:00 PM</td>
<td>9/28/11</td>
<td>12/7/11</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1045</td>
<td>6042</td>
<td>CED 391</td>
<td>Jam Time Guitar III</td>
<td>0</td>
<td>Th</td>
<td>6:30 PM</td>
<td>8:00 PM</td>
<td>9/29/11</td>
<td>12/8/11</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1049</td>
<td>1622</td>
<td>ENGL 097</td>
<td>Comp: Paragraph</td>
<td>5</td>
<td>DAILY</td>
<td>8:00 AM</td>
<td>9:00 AM</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1049</td>
<td>1582</td>
<td>ENGL 092</td>
<td>Reading Concepts</td>
<td>5</td>
<td>DAILY</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1049</td>
<td>1512</td>
<td>ENGL 090</td>
<td>Basic Engl Structure</td>
<td>5</td>
<td>DAILY</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1049</td>
<td>1592</td>
<td>ENGL 092</td>
<td>Reading Concepts</td>
<td>5</td>
<td>DAILY</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1049</td>
<td>1532</td>
<td>ENGL 090</td>
<td>Basic Engl Structure</td>
<td>5</td>
<td>DAILY</td>
<td>12:00 PM</td>
<td>1:00 PM</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1049</td>
<td>1602</td>
<td>ENGL 092</td>
<td>Reading Concepts</td>
<td>5</td>
<td>MW</td>
<td>5:30 PM</td>
<td>7:45 PM</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1049</td>
<td>1652</td>
<td>ENGL 097</td>
<td>Comp: Paragraph</td>
<td>5</td>
<td>TTh</td>
<td>5:30 PM</td>
<td>7:45 PM</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1053</td>
<td>4212</td>
<td>ESL 025</td>
<td>Level I</td>
<td>10.0</td>
<td>MTWTh</td>
<td>8:45 AM</td>
<td>11:15 AM</td>
<td>9/26/11</td>
<td>12/15/11</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1053</td>
<td>4622</td>
<td>ABE 051</td>
<td>Writing II</td>
<td>5.0</td>
<td>MTWTh</td>
<td>11:15 AM</td>
<td>12:30 PM</td>
<td>9/26/11</td>
<td>12/15/11</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1053</td>
<td>4632</td>
<td>ABE 052</td>
<td>Writing III</td>
<td>5.0</td>
<td>MTWTh</td>
<td>11:15 AM</td>
<td>12:30 PM</td>
<td>9/26/11</td>
<td>12/15/11</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1053</td>
<td>4642</td>
<td>ABE 053</td>
<td>Writing IV</td>
<td>5.0</td>
<td>MTWTh</td>
<td>11:15 AM</td>
<td>12:30 PM</td>
<td>9/26/11</td>
<td>12/15/11</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1053</td>
<td>3952</td>
<td>SOC 225</td>
<td>Soc of Family</td>
<td>5.0</td>
<td>DAILY</td>
<td>1:00 PM</td>
<td>2:00 PM</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1053</td>
<td>4312</td>
<td>ESL 097</td>
<td>Level I</td>
<td>9.6</td>
<td>MTWTh</td>
<td>6:00 PM</td>
<td>9:00 PM</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1056</td>
<td>1572</td>
<td>ENGL 092</td>
<td>Reading Concepts</td>
<td>5</td>
<td>DAILY</td>
<td>8:00 AM</td>
<td>9:00 AM</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1056</td>
<td>3862</td>
<td>SDS 101</td>
<td>Study Skills</td>
<td>5</td>
<td>DAILY</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1056</td>
<td>3872</td>
<td>SDS 101</td>
<td>Study Skills</td>
<td>5</td>
<td>DAILY</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1056</td>
<td>3882</td>
<td>SDS 101</td>
<td>Study Skills</td>
<td>5</td>
<td>DAILY</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1056</td>
<td>3892</td>
<td>SDS 101</td>
<td>Study Skills</td>
<td>5</td>
<td>DAILY</td>
<td>12:00 PM</td>
<td>1:00 PM</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1056</td>
<td>1562</td>
<td>ENGL 090</td>
<td>Basic Engl Structure</td>
<td>5</td>
<td>DAILY</td>
<td>1:00 PM</td>
<td>2:00 PM</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1056</td>
<td>1552</td>
<td>ENGL 090</td>
<td>Basic Engl Structure</td>
<td>5</td>
<td>TTh</td>
<td>5:30 PM</td>
<td>7:45 PM</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1057</td>
<td>4032</td>
<td>SPAN&</td>
<td>122</td>
<td>Spanish II</td>
<td>5</td>
<td>DAILY</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1057</td>
<td>1522</td>
<td>ENGL 090</td>
<td>Basic Engl Structure</td>
<td>5</td>
<td>DAILY</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1057</td>
<td>6162</td>
<td>CED 839</td>
<td>Embellish It!</td>
<td>0</td>
<td>Sa</td>
<td>11:00 AM</td>
<td>4:00 PM</td>
<td>10/1/11</td>
<td>10/1/11</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1057</td>
<td>6152</td>
<td>CED 771</td>
<td>Sheets and Stitches</td>
<td>0</td>
<td>Sa</td>
<td>11:00 AM</td>
<td>4:30 PM</td>
<td>10/22/11</td>
<td>10/22/11</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1057</td>
<td>6052</td>
<td>CED 469</td>
<td>Beginning Harmonica</td>
<td>0</td>
<td>Th</td>
<td>6:30 PM</td>
<td>8:00 PM</td>
<td>10/6/11</td>
<td>12/15/11</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEL 1062</td>
<td>1262</td>
<td>EAP 075</td>
<td>Conv English</td>
<td>5</td>
<td>DAILY</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLDG</td>
<td>ROOM</td>
<td>ITEM#</td>
<td>DEPT</td>
<td>CRS</td>
<td>TITLE</td>
<td>CR</td>
<td>DAYS</td>
<td>STIME</td>
<td>ETIME</td>
<td>START</td>
<td>END</td>
<td>CAP</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>-----</td>
<td>---------------------------</td>
<td>----</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>-----</td>
</tr>
<tr>
<td>WEL</td>
<td>1068</td>
<td>6262</td>
<td>CED</td>
<td>574</td>
<td>Pilates</td>
<td>0</td>
<td>W</td>
<td>5:30 PM</td>
<td>6:30 PM</td>
<td>9/28/11</td>
<td>12/7/11</td>
<td>20</td>
</tr>
<tr>
<td>WEL</td>
<td>1068</td>
<td>6282</td>
<td>CED</td>
<td>484</td>
<td>Hatha Yoga</td>
<td>0</td>
<td>T</td>
<td>6:00 PM</td>
<td>7:30 PM</td>
<td>9/27/11</td>
<td>12/13/11</td>
<td>25</td>
</tr>
<tr>
<td>WEL</td>
<td>1069</td>
<td>0272</td>
<td>ANTH&</td>
<td>206</td>
<td>Cultural Anthr</td>
<td>5</td>
<td>DAILY</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WEL</td>
<td>1069</td>
<td>0262</td>
<td>ANTH&</td>
<td>100</td>
<td>Survey of Anthr</td>
<td>5</td>
<td>DAILY</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WEL</td>
<td>1069</td>
<td>0882</td>
<td>BUS</td>
<td>204</td>
<td>Intro to Law</td>
<td>5</td>
<td>DAILY</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WEL</td>
<td>1070</td>
<td>2152</td>
<td>HIST&</td>
<td>146</td>
<td>US History I</td>
<td>5</td>
<td>DAILY</td>
<td>7:00 AM</td>
<td>8:00 AM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>WEL</td>
<td>1070</td>
<td>4002</td>
<td>SPAN&</td>
<td>121</td>
<td>Spanish I</td>
<td>5</td>
<td>DAILY</td>
<td>8:00 AM</td>
<td>9:00 AM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>WEL</td>
<td>1070</td>
<td>2172</td>
<td>HIST&</td>
<td>214</td>
<td>Pacific NW Hist</td>
<td>5</td>
<td>DAILY</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>WEL</td>
<td>1070</td>
<td>6352</td>
<td>CED</td>
<td>292</td>
<td>Cake Decorating 101</td>
<td>0</td>
<td>Sa</td>
<td>9:00 AM</td>
<td>1:00 PM</td>
<td>10/22/11</td>
<td>10/22/11</td>
<td>12</td>
</tr>
<tr>
<td>WEL</td>
<td>1070</td>
<td>6362</td>
<td>CED</td>
<td>295</td>
<td>Cake Decorating Next</td>
<td>0</td>
<td>Sa</td>
<td>9:00 AM</td>
<td>1:00 PM</td>
<td>11/5/11</td>
<td>11/5/11</td>
<td>12</td>
</tr>
<tr>
<td>WEL</td>
<td>1070</td>
<td>2122</td>
<td>HIST&</td>
<td>116</td>
<td>Wstn Civ I</td>
<td>5</td>
<td>DAILY</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>WEL</td>
<td>1070</td>
<td>2162</td>
<td>HIST&</td>
<td>147</td>
<td>US History II</td>
<td>5</td>
<td>DAILY</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>WEL</td>
<td>1070</td>
<td>2142</td>
<td>HIST&</td>
<td>146</td>
<td>US History I</td>
<td>5</td>
<td>DAILY</td>
<td>12:00 PM</td>
<td>1:00 PM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>WEL</td>
<td>1070</td>
<td>2166</td>
<td>HIST&</td>
<td>147</td>
<td>US History II</td>
<td>5</td>
<td>DAILY</td>
<td>1:00 PM</td>
<td>2:00 PM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>WEL</td>
<td>1070</td>
<td>3932</td>
<td>SDS</td>
<td>107</td>
<td>College Nav 1</td>
<td>1</td>
<td>T</td>
<td>2:00 PM</td>
<td>3:00 PM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WEL</td>
<td>1070</td>
<td>6222</td>
<td>CED</td>
<td>337</td>
<td>Chinese Watercolor</td>
<td>0</td>
<td>W</td>
<td>3:00 PM</td>
<td>5:00 PM</td>
<td>10/5/11</td>
<td>11/9/11</td>
<td>10</td>
</tr>
<tr>
<td>WEL</td>
<td>1070</td>
<td>4082</td>
<td>THTR</td>
<td>265</td>
<td>Acting II</td>
<td>0</td>
<td>TTH</td>
<td>5:30 PM</td>
<td>7:45 PM</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>WEL</td>
<td>1070</td>
<td>4062</td>
<td>THTR</td>
<td>165</td>
<td>Acting I</td>
<td>0</td>
<td>TTH</td>
<td>5:30 PM</td>
<td>7:45 PM</td>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

Classes only meet on Nov. 15, 17 & 22 in this room.

<p>| WEL | 1072 | 0462 | ART | 250 | Ceramics:Adv | 5 | MW | 1:00 PM | 4:30 PM | | | 3 |
| WEL | 1072 | 0402 | ART | 152 | Ceramics III | 5 | MW | 1:00 PM | 4:30 PM | | | 0 |
| WEL | 1072 | 0382 | ART | 151 | Ceramics II | 5 | MW | 1:00 PM | 4:30 PM | | | 0 |
| WEL | 1072 | 0362 | ART | 150 | Ceramics I | 5 | MW | 1:00 PM | 4:30 PM | | | 12 |
| WEL | 1072 | 0472 | ART | 250 | Ceramics:Adv | 5 | MW | 5:30 PM | 9:00 PM | | | 3 |
| WEL | 1072 | 0412 | ART | 152 | Ceramics III | 5 | MW | 5:30 PM | 9:00 PM | | | 0 |
| WEL | 1072 | 0392 | ART | 151 | Ceramics II | 5 | MW | 5:30 PM | 9:00 PM | | | 0 |
| WEL | 1072 | 0372 | ART | 150 | Ceramics I | 5 | MW | 5:30 PM | 9:00 PM | | | 12 |
| WTI | 2105 | 3206 | PCOL | 101 | Pharmacology I | 1 | M | 8:00 AM | 9:00 AM | | | 48 |
| WTI | 2105 | 3062 | NURS | 100 | Intro Disc Nurs | 5 | MW | 9:00 AM | 12:00 PM| | | 50 |
| WTI | 2105 | 3182 | NUTR | 115 | Nutr Hlth Prof | 3 | T | 8:00 AM | 11:00 AM| | | 55 |
| WTI | 2105 | 3192 | NUTR | 116 | App of Nutr Hlthcare | 2 | T | 11:00 AM| 12:30 PM| | | 18 |
| WTI | 2105 | 3122 | NURS | 200 | Nsg Syst:Comm Clien | 5 | MW | 1:00 PM | 5:00 PM | | | 60 |
| WTI | 2105 | 0802 | BIOL&| 241 | Human A & P 1 | 5 | MW | 5:30 PM | 7:30 PM | | | 24 |
| WTI | 2106 | 2092 | HCA | 115 | Clinical Proc I | 7 | Sa | 8:00 AM | 5:00 AM | | | 15 |
| WTI | 2106 | 0702 | BIOL&| 100 | Survey of Biology | 5 | MTWTh| 8:00 AM | 9:00 AM | | | 24 |
| WTI | 2106 | 0692 | BIOL&| 100 | Survey of Biology | 5 | MTWTh| 8:00 AM | 9:00 AM | | | 24 |
| WTI | 2106 | 0822 | BIOL&| 242 | Human A & P 2 | 5 | MTWTh| 9:00 AM | 10:00 AM| | | 24 |
| WTI | 2106 | 0812 | BIOL&| 242 | Human A & P 2 | 5 | MTWTh| 9:00 AM | 10:00 AM| | | 24 |
| WTI | 2106 | 0842 | BIOL&| 260 | Microbiology | 5 | MTWTh| 11:00 AM| 12:00 PM| | | 24 |
| WTI | 2106 | 0832 | BIOL&| 260 | Microbiology | 5 | MTWTh| 11:00 AM| 12:00 PM| | | 24 |
| WTI | 2106 | 0682 | BIOL | 225 | Envir Science I | 5 | MTWTh| 12:00 AM| 1:00 PM | | | 24 |
| WTI | 2106 | 0792 | BIOL&| 241 | Human A & P 1 | 5 | MTW | 1:00 PM | 2:15 PM | | | 24 |
| WTI | 2106 | 0782 | BIOL&| 241 | Human A & P 1 | 5 | MTW | 1:00 PM | 2:15 PM | | | 24 |
| WTI | 2106 | 0772 | BIOL&| 241 | Human A & P 1 | 5 | MTW | 1:00 PM | 2:15 PM | | | 24 |</p>
<table>
<thead>
<tr>
<th>BLDG</th>
<th>ROOM</th>
<th>ITEM#</th>
<th>DEPT</th>
<th>CRS</th>
<th>TITLE</th>
<th>CR</th>
<th>DAYS</th>
<th>STIME</th>
<th>ETIME</th>
<th>START</th>
<th>END</th>
<th>CAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>WTI</td>
<td>2106</td>
<td>2202</td>
<td>HLTH</td>
<td>123</td>
<td>Medical Terminology</td>
<td>3</td>
<td>M</td>
<td>5:30 PM</td>
<td>8:30 PM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>WTI</td>
<td>2106</td>
<td>2212</td>
<td>HLTH</td>
<td>123</td>
<td>Medical Terminology</td>
<td>3</td>
<td>T</td>
<td>5:30 PM</td>
<td>8:30 PM</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>WTI</td>
<td>2106</td>
<td>2222</td>
<td>HLTH</td>
<td>123</td>
<td>Medical Terminology</td>
<td>3</td>
<td>W</td>
<td>5:30 PM</td>
<td>8:30 PM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>WTI</td>
<td>2111</td>
<td>2102</td>
<td>HCA</td>
<td>115</td>
<td>Clinical Proc I</td>
<td>7</td>
<td>Sa</td>
<td>8:00 AM</td>
<td>5:00 PM</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>WTI</td>
<td>2111</td>
<td>3792</td>
<td>RADT</td>
<td>122</td>
<td>Prin of Exposure II</td>
<td>3</td>
<td>T</td>
<td>9:00 AM</td>
<td>11:00 AM</td>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>WTI</td>
<td>2111</td>
<td>3802</td>
<td>RADT</td>
<td>141</td>
<td>Rad Bio/Protection</td>
<td>2</td>
<td>Th</td>
<td>9:00 AM</td>
<td>11:00 AM</td>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>WTI</td>
<td>2111</td>
<td>3812</td>
<td>RADT</td>
<td>152</td>
<td>Patient Care</td>
<td>3</td>
<td>T</td>
<td>12:30 PM</td>
<td>2:30 PM</td>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>WTI</td>
<td>2111</td>
<td>2082</td>
<td>HCA</td>
<td>113</td>
<td>HIV/AIDS</td>
<td>1</td>
<td>M</td>
<td>3:00 PM</td>
<td>5:00 PM</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>WTI</td>
<td>2111</td>
<td>2112</td>
<td>HCA</td>
<td>118</td>
<td>Law/Ethics</td>
<td>2</td>
<td>M</td>
<td>5:30 PM</td>
<td>7:30 PM</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>WTI</td>
<td>2111</td>
<td>2072</td>
<td>HCA</td>
<td>110</td>
<td>Med Office I</td>
<td>5</td>
<td>TTh</td>
<td>6:00 PM</td>
<td>8:30 PM</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>WTI</td>
<td>2148</td>
<td>3772</td>
<td>RADT</td>
<td>105</td>
<td>RADT Success</td>
<td>1</td>
<td>W</td>
<td>8:00 AM</td>
<td>10:00 AM</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>WTI</td>
<td>2148</td>
<td>3782</td>
<td>RADT</td>
<td>105</td>
<td>RADT Success</td>
<td>1</td>
<td>W</td>
<td>10:00 AM</td>
<td>12:00 PM</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>WTI</td>
<td>2206</td>
<td>3962</td>
<td>SOC&</td>
<td>101</td>
<td>Intro to Soc</td>
<td>5</td>
<td>DAILY</td>
<td>8:00 AM</td>
<td>9:00 AM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>WTI</td>
<td>2206</td>
<td>2362</td>
<td>MATH</td>
<td>096B</td>
<td>Elem Algebra Part II</td>
<td>3</td>
<td>MWF</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2206</td>
<td>3542</td>
<td>PEH</td>
<td>284</td>
<td>Found of Fit</td>
<td>3</td>
<td>MWF</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2206</td>
<td>3732</td>
<td>PSYC&</td>
<td>200</td>
<td>Lifespan Psych</td>
<td>5</td>
<td>DAILY</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>WTI</td>
<td>2206</td>
<td>3162</td>
<td>NURS</td>
<td>210</td>
<td>Senior Seminar I</td>
<td>1</td>
<td>M</td>
<td>12:00 PM</td>
<td>1:00 PM</td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>WTI</td>
<td>2206</td>
<td>3102</td>
<td>NURS</td>
<td>112</td>
<td>Nurs Success</td>
<td>2</td>
<td>T</td>
<td>12:30 PM</td>
<td>2:30 PM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2206</td>
<td>3172</td>
<td>NURS</td>
<td>214</td>
<td>Senior Seminar II</td>
<td>1</td>
<td>M</td>
<td>1:00 PM</td>
<td>2:00 PM</td>
<td></td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>WTI</td>
<td>2206</td>
<td>2192</td>
<td>HLTH</td>
<td>051</td>
<td>First Aid/CPR</td>
<td>1</td>
<td>T</td>
<td>4:00 PM</td>
<td>6:00 PM</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>WTI</td>
<td>2206</td>
<td>6472</td>
<td>CED</td>
<td>017</td>
<td>eBay: The Basics of Sr</td>
<td>0</td>
<td>M</td>
<td>6:00 PM</td>
<td>9:00 PM</td>
<td>10/24/11</td>
<td>10/24/11</td>
<td>25</td>
</tr>
<tr>
<td>WTI</td>
<td>2207</td>
<td>2472</td>
<td>MATH</td>
<td>097</td>
<td>Inter Algebra</td>
<td>5</td>
<td>DAILY</td>
<td>7:00 AM</td>
<td>8:00 AM</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>WTI</td>
<td>2207</td>
<td>2252</td>
<td>MATH</td>
<td>090</td>
<td>Basic Mathematics</td>
<td>5</td>
<td>DAILY</td>
<td>8:00 AM</td>
<td>9:00 AM</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>WTI</td>
<td>2207</td>
<td>1962</td>
<td>ENGL&</td>
<td>226</td>
<td>British Literature I</td>
<td>5</td>
<td>DAILY</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>WTI</td>
<td>2207</td>
<td>2262</td>
<td>MATH</td>
<td>090</td>
<td>Basic Mathematics</td>
<td>5</td>
<td>DAILY</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>WTI</td>
<td>2207</td>
<td>1692</td>
<td>ENGL</td>
<td>201</td>
<td>Comp:Adv Essay</td>
<td>5</td>
<td>DAILY</td>
<td>12:00 PM</td>
<td>1:00 PM</td>
<td></td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>WTI</td>
<td>2207</td>
<td>6582</td>
<td>CED</td>
<td>625</td>
<td>CPR for HCP Recertifi</td>
<td>0</td>
<td>T</td>
<td>5:30 PM</td>
<td>7:30 PM</td>
<td>9/27/11</td>
<td>9/27/11</td>
<td>15</td>
</tr>
<tr>
<td>WTI</td>
<td>2207</td>
<td>6192</td>
<td>CED</td>
<td>140</td>
<td>Digital Photography f</td>
<td>0</td>
<td>TTh</td>
<td>6:00 PM</td>
<td>9:00 PM</td>
<td>10/11/11</td>
<td>10/13/11</td>
<td>15</td>
</tr>
<tr>
<td>WTI</td>
<td>2207</td>
<td>6202</td>
<td>CED</td>
<td>788</td>
<td>SLR Photography f</td>
<td>0</td>
<td>T</td>
<td>6:00 PM</td>
<td>8:30 PM</td>
<td>10/18/11</td>
<td>11/8/11</td>
<td>15</td>
</tr>
<tr>
<td>WTI</td>
<td>2208</td>
<td>2612</td>
<td>MATH&</td>
<td>146</td>
<td>Intro to Stats</td>
<td>5</td>
<td>DAILY</td>
<td>8:00 AM</td>
<td>9:00 AM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2208</td>
<td>2592</td>
<td>MATH&</td>
<td>141</td>
<td>Precalc I</td>
<td>5</td>
<td>DAILY</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2208</td>
<td>2522</td>
<td>MATH</td>
<td>105</td>
<td>College Algebra</td>
<td>5</td>
<td>DAILY</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2208</td>
<td>2272</td>
<td>MATH</td>
<td>090</td>
<td>Basic Mathematics</td>
<td>5</td>
<td>DAILY</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2208</td>
<td>2432</td>
<td>MATH</td>
<td>097</td>
<td>Inter Algebra</td>
<td>5</td>
<td>DAILY</td>
<td>12:00 PM</td>
<td>1:00 PM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2208</td>
<td>2356</td>
<td>MATH</td>
<td>096</td>
<td>Elementary Algebra</td>
<td>5</td>
<td>DAILY</td>
<td>1:00 PM</td>
<td>2:00 PM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2208</td>
<td>2402</td>
<td>MATH</td>
<td>097</td>
<td>Inter Algebra</td>
<td>5</td>
<td>MW</td>
<td>6:00 PM</td>
<td>8:15 PM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2208</td>
<td>6462</td>
<td>CED</td>
<td>424</td>
<td>Retirement Income f</td>
<td>0</td>
<td>TTh</td>
<td>7:00 PM</td>
<td>9:00 PM</td>
<td>10/11/11</td>
<td>10/18/11</td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2209</td>
<td>2392</td>
<td>MATH</td>
<td>097</td>
<td>Inter Algebra</td>
<td>5</td>
<td>DAILY</td>
<td>8:00 AM</td>
<td>9:00 AM</td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>WTI</td>
<td>2209</td>
<td>2572</td>
<td>MATH</td>
<td>108</td>
<td>Math Reasoning</td>
<td>5</td>
<td>DAILY</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>WTI</td>
<td>2209</td>
<td>2132</td>
<td>HIST&</td>
<td>146</td>
<td>US History I</td>
<td>5</td>
<td>DAILY</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>WTI</td>
<td>2209</td>
<td>2602</td>
<td>MATH&</td>
<td>141</td>
<td>Precalc I</td>
<td>5</td>
<td>DAILY</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>WTI</td>
<td>2209</td>
<td>2422</td>
<td>MATH</td>
<td>097</td>
<td>Inter Algebra</td>
<td>5</td>
<td>DAILY</td>
<td>12:00 PM</td>
<td>1:00 PM</td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>WTI</td>
<td>2209</td>
<td>2282</td>
<td>MATH</td>
<td>090</td>
<td>Basic Mathematics</td>
<td>5</td>
<td>MW</td>
<td>6:00 PM</td>
<td>8:15 PM</td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>WTI</td>
<td>2209</td>
<td>7042</td>
<td>CED</td>
<td>836</td>
<td>Eating Local, Eating f</td>
<td>0</td>
<td>T</td>
<td>6:00 PM</td>
<td>8:30 PM</td>
<td>10/25/11</td>
<td>11/1/11</td>
<td>20</td>
</tr>
<tr>
<td>BLDG</td>
<td>ROOM</td>
<td>ITEM#</td>
<td>DEPT</td>
<td>CRS</td>
<td>TITLE</td>
<td>CR</td>
<td>DAYS</td>
<td>STIME</td>
<td>ETIME</td>
<td>START</td>
<td>END</td>
<td>CAP</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>-----</td>
<td>--------------------------------</td>
<td>----</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>WTI</td>
<td>2210</td>
<td>2512</td>
<td>MATH</td>
<td>105</td>
<td>College Algebra</td>
<td>5</td>
<td>DAILY</td>
<td>8:00 AM</td>
<td>9:00 AM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2210</td>
<td>2622</td>
<td>MATH&</td>
<td>151</td>
<td>Calculus I</td>
<td>5</td>
<td>DAILY</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2210</td>
<td>2312</td>
<td>MATH</td>
<td>096</td>
<td>Elementary Algebra</td>
<td>5</td>
<td>DAILY</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2210</td>
<td>3462</td>
<td>PEH</td>
<td>180</td>
<td>Personal Wellness</td>
<td>3</td>
<td>MWF</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2210</td>
<td>2352</td>
<td>MATH</td>
<td>096</td>
<td>Elementary Algebra</td>
<td>5</td>
<td>DAILY</td>
<td>12:00 PM</td>
<td>1:00 PM</td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>WTI</td>
<td>2210</td>
<td>2442</td>
<td>MATH</td>
<td>097</td>
<td>Inter Algebra</td>
<td>5</td>
<td>DAILY</td>
<td>1:00 PM</td>
<td>2:00 PM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2210</td>
<td>2332</td>
<td>MATH</td>
<td>096</td>
<td>Elementary Algebra</td>
<td>5</td>
<td>MW</td>
<td>6:00 PM</td>
<td>8:15 PM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2211</td>
<td>2582</td>
<td>MATH</td>
<td>200</td>
<td>Finite Math</td>
<td>5</td>
<td>DAILY</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>WTI</td>
<td>2211</td>
<td>2482</td>
<td>MATH</td>
<td>100A</td>
<td>Tech Math Allied Health</td>
<td>5</td>
<td>TTh</td>
<td>10:00 AM</td>
<td>12:00 PM</td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>WTI</td>
<td>2211</td>
<td>2372</td>
<td>MATH</td>
<td>096B</td>
<td>Elem Algebra Part II</td>
<td>3</td>
<td>MWF</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>WTI</td>
<td>2211</td>
<td>2382</td>
<td>MATH</td>
<td>096B</td>
<td>Elem Algebra Part II</td>
<td>3</td>
<td>MWF</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>WTI</td>
<td>2211</td>
<td>2492</td>
<td>MATH</td>
<td>100A</td>
<td>Tech Math Allied Health</td>
<td>5</td>
<td>MTWTh</td>
<td>1:00 PM</td>
<td>2:05 PM</td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>WTI</td>
<td>2212</td>
<td>2322</td>
<td>MATH</td>
<td>096</td>
<td>Elementary Algebra</td>
<td>5</td>
<td>DAILY</td>
<td>7:00 AM</td>
<td>8:00 AM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2212</td>
<td>2292</td>
<td>MATH</td>
<td>096</td>
<td>Elementary Algebra</td>
<td>5</td>
<td>DAILY</td>
<td>8:00 AM</td>
<td>9:00 AM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2212</td>
<td>2632</td>
<td>MATH&</td>
<td>151</td>
<td>Calculus I</td>
<td>5</td>
<td>DAILY</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2212</td>
<td>2452</td>
<td>MATH</td>
<td>097</td>
<td>Inter Algebra</td>
<td>5</td>
<td>DAILY</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2212</td>
<td>2532</td>
<td>MATH</td>
<td>105</td>
<td>College Algebra</td>
<td>5</td>
<td>DAILY</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2212</td>
<td>2542</td>
<td>MATH</td>
<td>105</td>
<td>College Algebra</td>
<td>5</td>
<td>DAILY</td>
<td>12:00 PM</td>
<td>1:00 PM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2212</td>
<td>2562</td>
<td>MATH</td>
<td>105</td>
<td>College Algebra</td>
<td>5</td>
<td>DAILY</td>
<td>1:00 PM</td>
<td>2:00 PM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2212</td>
<td>2552</td>
<td>MATH</td>
<td>105</td>
<td>College Algebra</td>
<td>5</td>
<td>MW</td>
<td>6:00 PM</td>
<td>8:15 PM</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2212</td>
<td>2642</td>
<td>MATH&</td>
<td>171</td>
<td>Math for Elem Educ I</td>
<td>5</td>
<td>TTh</td>
<td>6:00 PM</td>
<td>8:15 PM</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>WTI</td>
<td>2213</td>
<td>2652</td>
<td>MATH&</td>
<td>254</td>
<td>Calculus IV</td>
<td>5</td>
<td>DAILY</td>
<td>8:00 AM</td>
<td>9:00 AM</td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>WTI</td>
<td>2213</td>
<td>2462</td>
<td>MATH</td>
<td>097</td>
<td>Inter Algebra</td>
<td>5</td>
<td>DAILY</td>
<td>9:00 AM</td>
<td>10:00 AM</td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>WTI</td>
<td>2213</td>
<td>3552</td>
<td>PEH</td>
<td>287</td>
<td>Athletic Training</td>
<td>5</td>
<td>DAILY</td>
<td>10:00 AM</td>
<td>11:00 AM</td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>WTI</td>
<td>2213</td>
<td>6122</td>
<td>CED</td>
<td>368</td>
<td>Knitting Projects: Soc</td>
<td>0</td>
<td>Sa</td>
<td>10:00 AM</td>
<td>3:00 PM</td>
<td>11/5/11</td>
<td>11/5/11</td>
<td>10</td>
</tr>
<tr>
<td>WTI</td>
<td>2213</td>
<td>2412</td>
<td>MATH</td>
<td>097</td>
<td>Inter Algebra</td>
<td>5</td>
<td>DAILY</td>
<td>11:00 AM</td>
<td>12:00 PM</td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>WTI</td>
<td>2213</td>
<td>1672</td>
<td>ENGL</td>
<td>135</td>
<td>Creative Writing</td>
<td>5</td>
<td>DAILY</td>
<td>12:00 PM</td>
<td>1:00 PM</td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>WTI</td>
<td>2213</td>
<td>1722</td>
<td>ENGL</td>
<td>202</td>
<td>Comp:Critical Analysis</td>
<td>5</td>
<td>TTh</td>
<td>5:30 PM</td>
<td>7:45 PM</td>
<td></td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>WTI</td>
<td>2213</td>
<td>6102</td>
<td>CED</td>
<td>279</td>
<td>Beginning Knitting</td>
<td>0</td>
<td>W</td>
<td>6:30 PM</td>
<td>8:30 PM</td>
<td>9/28/11</td>
<td>10/19/11</td>
<td>10</td>
</tr>
<tr>
<td>WTI</td>
<td>2213</td>
<td>6112</td>
<td>CED</td>
<td>368</td>
<td>Knitting Small Project</td>
<td>0</td>
<td>W</td>
<td>6:30 PM</td>
<td>8:30 PM</td>
<td>10/26/11</td>
<td>11/16/11</td>
<td>10</td>
</tr>
<tr>
<td>WTI</td>
<td>2217</td>
<td>2702</td>
<td>MLT</td>
<td>213</td>
<td>Hematology</td>
<td>7</td>
<td>T</td>
<td>8:30 AM</td>
<td>12:00 PM</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>WTI</td>
<td>2217</td>
<td>3142</td>
<td>NURS</td>
<td>204</td>
<td>Univ Self-Care: Holist</td>
<td>6</td>
<td>MW</td>
<td>9:00 AM</td>
<td>12:00 PM</td>
<td></td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>WTI</td>
<td>2217</td>
<td>5252</td>
<td>OCEA&</td>
<td>100</td>
<td>Intro to Oceanography</td>
<td>5</td>
<td>Sa</td>
<td>9:00 AM</td>
<td>10:30 AM</td>
<td></td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

Class meets on Saturday, Oct. 1 from 9-10:30 a.m. in WTI 221

WTI	2217	2232	JAPN&	121	Japanese I	5	DAILY	12:00 PM	1:00 PM			30
WTI	2217	1072	CJ	110	Police Org & Admin	5	DAILY	1:00 PM	2:00 PM			35
WTI	2217	1082	CJ	201	Crim Investigations	5	DAILY	2:00 PM	3:00 PM			35
WTI	2217	1332	ECE	216	Curr Prgrm SchL-Age	3	M	5:30 PM	8:30 PM date		10	
WTI	2217	1342	ECE	220	Math & Science in EC	3	T	5:30 PM	8:30 PM			20
WTI	2217	1322	ECE	206	Sharing Literature	3	Th	5:30 PM	8:30 PM			20
WTI	2217	1352	ECE	221	Mvmt/Motor Develo	3	W	5:30 PM	8:30 PM			20
WTI	2220	1292	AGRI	119	ECE Cornerstone	1	Sa	9:00 AM	2:00 PM dates		28	
WTI	2220	3052	NURS	090	Nurs Assist: Basic pt c	8	TWTh	8:00 AM	12:00 PM			20

Class meets on Saturday 10/29/11 and 11/12/11 from 9 a.m. to 2 p.m.
<table>
<thead>
<tr>
<th>BLDG</th>
<th>ROOM</th>
<th>ITEM#</th>
<th>DEPT</th>
<th>CRS</th>
<th>TITLE</th>
<th>CR</th>
<th>DAYS</th>
<th>STIME</th>
<th>ETIME</th>
<th>START</th>
<th>END</th>
<th>CAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>WTI</td>
<td>2220</td>
<td>2702</td>
<td>MLT</td>
<td>213</td>
<td>Hematology</td>
<td>7</td>
<td>M</td>
<td>8:30 AM</td>
<td>12:00 PM</td>
<td>12</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>WTI</td>
<td>2220</td>
<td>0932</td>
<td>CDS</td>
<td>204</td>
<td>Group Counseling</td>
<td>4</td>
<td>MW</td>
<td>12:00 PM</td>
<td>2:00 PM</td>
<td>30</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2220</td>
<td>0922</td>
<td>CDS</td>
<td>100</td>
<td>Survey of CD Problems</td>
<td>5</td>
<td>TTh</td>
<td>12:00 PM</td>
<td>2:30 PM</td>
<td>30</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2220</td>
<td>0942</td>
<td>CDS</td>
<td>205</td>
<td>CD and the Family</td>
<td>4</td>
<td>MW</td>
<td>2:00 PM</td>
<td>4:00 PM</td>
<td>30</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2220</td>
<td>1432</td>
<td>EDUC&</td>
<td>115</td>
<td>Child Development</td>
<td>5</td>
<td>TTh</td>
<td>5:30 PM</td>
<td>7:45 PM</td>
<td>27</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>WTI</td>
<td>2220</td>
<td>1282</td>
<td>ECE</td>
<td>101</td>
<td>Intro to ECE</td>
<td>5</td>
<td>TTh</td>
<td>5:30 PM</td>
<td>8:00 PM</td>
<td>30</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>WTI</td>
<td>2305</td>
<td>0812</td>
<td>BIOL &</td>
<td>242</td>
<td>LAB</td>
<td>0</td>
<td>F</td>
<td>9:00 AM</td>
<td>11:00 AM</td>
<td>24</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>WTI</td>
<td>2305</td>
<td>0822</td>
<td>BIOL &</td>
<td>242</td>
<td>LAB</td>
<td>0</td>
<td>F</td>
<td>11:00 AM</td>
<td>1:00 PM</td>
<td>24</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>WTI</td>
<td>2305</td>
<td>0762</td>
<td>BIOL &</td>
<td>211</td>
<td>LAB</td>
<td>0</td>
<td>W</td>
<td>3:00 PM</td>
<td>5:00 PM</td>
<td>24</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>WTI</td>
<td>2305</td>
<td>0742</td>
<td>BIOL &</td>
<td>211</td>
<td>LAB</td>
<td>0</td>
<td>W</td>
<td>5:00 PM</td>
<td>7:00 PM</td>
<td>24</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>WTI</td>
<td>2306</td>
<td>0832</td>
<td>BIOL &</td>
<td>260</td>
<td>LAB</td>
<td>0</td>
<td>W</td>
<td>12:30 PM</td>
<td>2:30 PM</td>
<td>24</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>WTI</td>
<td>2306</td>
<td>0842</td>
<td>BIOL &</td>
<td>260</td>
<td>LAB</td>
<td>0</td>
<td>W</td>
<td>2:30 PM</td>
<td>4:30 PM</td>
<td>24</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>WTI</td>
<td>2308</td>
<td>0682</td>
<td>BIOL &</td>
<td>225</td>
<td>LAB</td>
<td>0</td>
<td>W</td>
<td>8:00 AM</td>
<td>11:00 PM</td>
<td>24</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>WTI</td>
<td>2308</td>
<td>0712</td>
<td>BIOL &</td>
<td>211</td>
<td>LAB</td>
<td>0</td>
<td>F</td>
<td>10:00 AM</td>
<td>12:00 PM</td>
<td>24</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>WTI</td>
<td>2308</td>
<td>0692</td>
<td>BIOL &</td>
<td>100</td>
<td>LAB</td>
<td>0</td>
<td>Th</td>
<td>12:00 PM</td>
<td>2:00 PM</td>
<td>24</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>WTI</td>
<td>2308</td>
<td>0722</td>
<td>BIOL &</td>
<td>211</td>
<td>LAB</td>
<td>0</td>
<td>F</td>
<td>1:00 PM</td>
<td>3:00 PM</td>
<td>24</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>WTI</td>
<td>2308</td>
<td>0702</td>
<td>BIOL &</td>
<td>100</td>
<td>LAB</td>
<td>0</td>
<td>Th</td>
<td>2:00 PM</td>
<td>4:00 PM</td>
<td>24</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>WTI</td>
<td>2308</td>
<td>0732</td>
<td>BIOL &</td>
<td>211</td>
<td>LAB</td>
<td>0</td>
<td>F</td>
<td>3:00 PM</td>
<td>5:00 PM</td>
<td>24</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>WTI</td>
<td>2308</td>
<td>0752</td>
<td>BIOL &</td>
<td>211</td>
<td>Majors Cell</td>
<td>5</td>
<td>T</td>
<td>5:35 PM</td>
<td>8:35 PM</td>
<td>24</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>WTI</td>
<td>2308</td>
<td>0752</td>
<td>BIOL &</td>
<td>211</td>
<td>LAB</td>
<td>0</td>
<td>Th</td>
<td>5:35 PM</td>
<td>8:35 PM</td>
<td>24</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>WTI</td>
<td>2308</td>
<td>0706</td>
<td>BIOL &</td>
<td>100</td>
<td>Survey of Biology + Lab</td>
<td>5</td>
<td>MW</td>
<td>6:00 PM</td>
<td>9:00 PM</td>
<td>24</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>WTI</td>
<td>2309</td>
<td>0772</td>
<td>BIOL &</td>
<td>241</td>
<td>LAB</td>
<td>0</td>
<td>M</td>
<td>2:30 PM</td>
<td>4:30 PM</td>
<td>24</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>WTI</td>
<td>2309</td>
<td>0782</td>
<td>BIOL &</td>
<td>241</td>
<td>LAB</td>
<td>0</td>
<td>T</td>
<td>2:30 PM</td>
<td>4:30 PM</td>
<td>24</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>WTI</td>
<td>2309</td>
<td>0792</td>
<td>BIOL &</td>
<td>241</td>
<td>LAB</td>
<td>0</td>
<td>W</td>
<td>2:30 PM</td>
<td>4:30 PM</td>
<td>24</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>WTI</td>
<td>2309</td>
<td>0802</td>
<td>BIOL &</td>
<td>241</td>
<td>LAB</td>
<td>0</td>
<td>Th</td>
<td>5:30 PM</td>
<td>8:30 PM</td>
<td>24</td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>
APPENDIX E
OMAK CAMPUS
CLASSROOM UTILIZATION STUDY
FALL QUARTER 2013
OMAK CAMPUS AVAILABILITY AND CLASSROOM OCCUPANCY LOADS

<table>
<thead>
<tr>
<th>ROOM</th>
<th>SQ. FT.</th>
<th>OCC. LOAD *</th>
<th>ACTUAL CLASS SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>122</td>
<td>360</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>204</td>
<td>640</td>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>205</td>
<td>802</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>208</td>
<td>1200</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>209</td>
<td>669</td>
<td>33</td>
<td>16</td>
</tr>
<tr>
<td>301</td>
<td>678</td>
<td>34</td>
<td>28</td>
</tr>
<tr>
<td>302</td>
<td>413</td>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td>304</td>
<td>522</td>
<td>26</td>
<td>24</td>
</tr>
<tr>
<td>305</td>
<td>522</td>
<td>26</td>
<td>24</td>
</tr>
<tr>
<td>311</td>
<td>1655</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>901</td>
<td>369</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>902</td>
<td>375</td>
<td>19</td>
<td>12</td>
</tr>
</tbody>
</table>

*SQUARE FEET OF ROOM/20 = OCCUPANCY LOAD

NOTE: CLASSES ARE FROM 8:00 AM TO 8:50 PM
<table>
<thead>
<tr>
<th>ITEM</th>
<th>DEPT DIV</th>
<th>CRS N</th>
<th>SEC</th>
<th>TITLE</th>
<th>INSTR NAME</th>
<th>CAP</th>
<th>ENR</th>
<th>classroom</th>
</tr>
</thead>
<tbody>
<tr>
<td>8002</td>
<td>ACCT</td>
<td>102</td>
<td>AN</td>
<td>Practical Acct I</td>
<td>Rodgers J</td>
<td>32</td>
<td>30</td>
<td>301</td>
</tr>
<tr>
<td>8012</td>
<td>ACCT</td>
<td>165</td>
<td>EN</td>
<td>Comp Acct</td>
<td>Hill Y</td>
<td>20</td>
<td>19</td>
<td>204</td>
</tr>
<tr>
<td>8022</td>
<td>ANTH</td>
<td>100</td>
<td>AN</td>
<td>Survey of Anthropology</td>
<td>Tate-Libby J</td>
<td>26</td>
<td>20</td>
<td>301</td>
</tr>
<tr>
<td>8032</td>
<td>ART</td>
<td>106</td>
<td>EN</td>
<td>Design 2-D</td>
<td>Clark S</td>
<td>16</td>
<td>14</td>
<td>122</td>
</tr>
<tr>
<td>8042</td>
<td>ART</td>
<td>217</td>
<td>AN</td>
<td>Reading I</td>
<td>Best V</td>
<td>16</td>
<td>14</td>
<td>122</td>
</tr>
<tr>
<td>8052</td>
<td>BCT</td>
<td>100</td>
<td>AN</td>
<td>Basic Computer Keybd</td>
<td>McIvor M</td>
<td>20</td>
<td>10</td>
<td>204</td>
</tr>
<tr>
<td>8062</td>
<td>BCT</td>
<td>105</td>
<td>AN</td>
<td>Computer Applic</td>
<td>McIvor M</td>
<td>20</td>
<td>18</td>
<td>204</td>
</tr>
<tr>
<td>8072</td>
<td>BCT</td>
<td>105</td>
<td>AN</td>
<td>Computer Applic</td>
<td>McIvor M</td>
<td>20</td>
<td>20</td>
<td>204</td>
</tr>
<tr>
<td>8082</td>
<td>BCT</td>
<td>116</td>
<td>EN</td>
<td>Prof Work Relations</td>
<td>Turner V</td>
<td>24</td>
<td>7</td>
<td>305</td>
</tr>
<tr>
<td>8102</td>
<td>BIOL&</td>
<td>100</td>
<td>AN</td>
<td>Survey of Biology</td>
<td>Dykes J</td>
<td>24</td>
<td>19</td>
<td>311</td>
</tr>
<tr>
<td>8112</td>
<td>BIOL&</td>
<td>211</td>
<td>AN</td>
<td>Majors Cel</td>
<td>Johnson K</td>
<td>24</td>
<td>10</td>
<td>311</td>
</tr>
<tr>
<td>8122</td>
<td>BIOL&</td>
<td>213</td>
<td>EN</td>
<td>Majors Animals</td>
<td>Johnson K</td>
<td>24</td>
<td>10</td>
<td>311</td>
</tr>
<tr>
<td>8132</td>
<td>BIOL&</td>
<td>241</td>
<td>AN</td>
<td>Human A & P 1</td>
<td>Johnson K</td>
<td>24</td>
<td>8</td>
<td>311</td>
</tr>
<tr>
<td>8152</td>
<td>BUS</td>
<td>240</td>
<td>HYO</td>
<td>Prin of Management</td>
<td>Rodgers J</td>
<td>30</td>
<td>25</td>
<td>301</td>
</tr>
<tr>
<td>8172</td>
<td>BUS&</td>
<td>201</td>
<td>EN</td>
<td>Business Law</td>
<td>Cochran C</td>
<td>18</td>
<td>7</td>
<td>302</td>
</tr>
<tr>
<td>8182</td>
<td>CDS</td>
<td>100</td>
<td>K2</td>
<td>Survey of Chem Depend</td>
<td>Warman B</td>
<td>12</td>
<td>10</td>
<td>901</td>
</tr>
<tr>
<td>8192</td>
<td>CDS</td>
<td>204</td>
<td>K2</td>
<td>Group Process/Treatment</td>
<td>Warman B</td>
<td>10</td>
<td>2</td>
<td>901</td>
</tr>
<tr>
<td>8202</td>
<td>CDS</td>
<td>205</td>
<td>K2</td>
<td>CD and the Family</td>
<td>Warman B</td>
<td>10</td>
<td>3</td>
<td>901</td>
</tr>
<tr>
<td>8212</td>
<td>CDS</td>
<td>295</td>
<td>AN</td>
<td>Field Experience</td>
<td>Warman B</td>
<td>15</td>
<td>4</td>
<td>901</td>
</tr>
<tr>
<td>8222</td>
<td>CHEM&</td>
<td>121</td>
<td>AN</td>
<td>Intro to Chemistry</td>
<td>Dykes J</td>
<td>26</td>
<td>20</td>
<td>311</td>
</tr>
<tr>
<td>8232</td>
<td>CJ&</td>
<td>101</td>
<td>K2</td>
<td>Intro Crim Just</td>
<td>Haynes M</td>
<td>12</td>
<td>7</td>
<td>902</td>
</tr>
<tr>
<td>8242</td>
<td>CJ</td>
<td>110</td>
<td>K2</td>
<td>Police Org & Admin</td>
<td>Smet R</td>
<td>12</td>
<td>7</td>
<td>902</td>
</tr>
<tr>
<td>8252</td>
<td>CJ</td>
<td>201</td>
<td>K2</td>
<td>Crim Investigations</td>
<td>Smet R</td>
<td>12</td>
<td>6</td>
<td>902</td>
</tr>
<tr>
<td>8262</td>
<td>CJ</td>
<td>210</td>
<td>K2</td>
<td>Intro Corrections</td>
<td>Smet R</td>
<td>12</td>
<td>8</td>
<td>902</td>
</tr>
<tr>
<td>8272</td>
<td>CMST&</td>
<td>210</td>
<td>EN</td>
<td>Interpersonal Comm</td>
<td>Turner V</td>
<td>26</td>
<td>17</td>
<td>301</td>
</tr>
<tr>
<td>8282</td>
<td>CMST&</td>
<td>220</td>
<td>AN</td>
<td>Public Speaking</td>
<td>Lindeblad D</td>
<td>24</td>
<td>16</td>
<td>304</td>
</tr>
<tr>
<td>8286</td>
<td>CTS</td>
<td>110</td>
<td>AN</td>
<td>Computer Hardware</td>
<td>Hill Y</td>
<td>24</td>
<td>11</td>
<td>205</td>
</tr>
<tr>
<td>8322</td>
<td>ECE</td>
<td>119</td>
<td>K2</td>
<td>ECE Cornerstone</td>
<td>Spurgeon N</td>
<td>10</td>
<td>3</td>
<td>901</td>
</tr>
<tr>
<td>8386</td>
<td>ECED&</td>
<td>105</td>
<td>K2</td>
<td>Intro to ECE</td>
<td>Pete K</td>
<td>10</td>
<td>7</td>
<td>901</td>
</tr>
<tr>
<td>8392</td>
<td>ECON</td>
<td>101</td>
<td>AN</td>
<td>Intro to Economics</td>
<td>Rodgers J</td>
<td>26</td>
<td>18</td>
<td>305</td>
</tr>
<tr>
<td>8422</td>
<td>ENGL</td>
<td>090</td>
<td>AN</td>
<td>Basic Engl Structure</td>
<td>Knowlton N</td>
<td>22</td>
<td>15</td>
<td>305</td>
</tr>
<tr>
<td>8432</td>
<td>ENGL</td>
<td>090</td>
<td>EN</td>
<td>Basic Engl Structure</td>
<td>Farrell S</td>
<td>22</td>
<td>10</td>
<td>304</td>
</tr>
<tr>
<td>8442</td>
<td>ENGL</td>
<td>092</td>
<td>EN</td>
<td>Reading Concepts</td>
<td>Farrell S</td>
<td>26</td>
<td>10</td>
<td>304</td>
</tr>
<tr>
<td>8452</td>
<td>ENGL</td>
<td>097</td>
<td>AN</td>
<td>Comp: Paragraph</td>
<td>Colbert S</td>
<td>22</td>
<td>17</td>
<td>301</td>
</tr>
<tr>
<td>8472</td>
<td>ENGL</td>
<td>201</td>
<td>EN</td>
<td>Comp:Adv Essay</td>
<td>Donahue P</td>
<td>24</td>
<td>11</td>
<td>305</td>
</tr>
<tr>
<td>8492</td>
<td>ENGL&</td>
<td>101</td>
<td>AN</td>
<td>Composition: General</td>
<td>Donahue P</td>
<td>24</td>
<td>23</td>
<td>304</td>
</tr>
<tr>
<td>8502</td>
<td>ENGL&</td>
<td>101</td>
<td>HYO</td>
<td>Composition: General</td>
<td>Colbert S</td>
<td>20</td>
<td>20</td>
<td>305</td>
</tr>
<tr>
<td>8512</td>
<td>ENGL&</td>
<td>101</td>
<td>EN</td>
<td>Composition: General</td>
<td>Riling R</td>
<td>22</td>
<td>23</td>
<td>305</td>
</tr>
<tr>
<td>8522</td>
<td>GEOL</td>
<td>218</td>
<td>HYO</td>
<td>Enviro Geology</td>
<td>Bard E</td>
<td>20</td>
<td>20</td>
<td>311</td>
</tr>
<tr>
<td>8526</td>
<td>HCA</td>
<td>110</td>
<td>AN</td>
<td>Med Office I</td>
<td>Baker R</td>
<td>15</td>
<td>13</td>
<td>204</td>
</tr>
<tr>
<td>8532</td>
<td>HCA</td>
<td>113</td>
<td>K2</td>
<td>HIV/AIDS Education</td>
<td>Harrell J</td>
<td>18</td>
<td>7</td>
<td>209</td>
</tr>
<tr>
<td>8536</td>
<td>HCA</td>
<td>115</td>
<td>K2</td>
<td>Clinical Proc I</td>
<td>Kaiser J</td>
<td>15</td>
<td>13</td>
<td>209</td>
</tr>
<tr>
<td>8537</td>
<td>HCA</td>
<td>118</td>
<td>K2</td>
<td>Law/Ethics</td>
<td>Kaiser J</td>
<td>15</td>
<td>13</td>
<td>209</td>
</tr>
<tr>
<td>8542</td>
<td>HIST&</td>
<td>146</td>
<td>AN</td>
<td>US History I</td>
<td>Lindeblad D</td>
<td>28</td>
<td>29</td>
<td>304</td>
</tr>
<tr>
<td>8552</td>
<td>HLTH</td>
<td>051</td>
<td>AN</td>
<td>Basic First Aid</td>
<td>Todd R</td>
<td>10</td>
<td>10</td>
<td>209</td>
</tr>
<tr>
<td>8562</td>
<td>HLTH</td>
<td>123</td>
<td>EN</td>
<td>Medical Terminology</td>
<td>Todd R</td>
<td>26</td>
<td>13</td>
<td>205</td>
</tr>
<tr>
<td>8572</td>
<td>HUM&</td>
<td>101</td>
<td>EN</td>
<td>Intro to Humanities</td>
<td>Knowlton N</td>
<td>26</td>
<td>12</td>
<td>304</td>
</tr>
<tr>
<td>8592</td>
<td>MATH</td>
<td>090</td>
<td>AN</td>
<td>Basic Mathematics</td>
<td>Spears N</td>
<td>26</td>
<td>12</td>
<td>305</td>
</tr>
<tr>
<td>8602</td>
<td>MATH</td>
<td>090</td>
<td>EN</td>
<td>Basic Mathematics</td>
<td>Ward-Guthrie</td>
<td>24</td>
<td>16</td>
<td>205</td>
</tr>
<tr>
<td>8612</td>
<td>MATH</td>
<td>093</td>
<td>AN</td>
<td>Pre Algebra</td>
<td>Farrell S</td>
<td>26</td>
<td>17</td>
<td>301</td>
</tr>
<tr>
<td>8622</td>
<td>MATH</td>
<td>093</td>
<td>EN</td>
<td>Pre Algebra</td>
<td>Painter C</td>
<td>26</td>
<td>27</td>
<td>205</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Code</td>
<td>Title</td>
<td>Instructor</td>
<td>Credits</td>
<td>Days</td>
<td>Time</td>
<td>Location</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-------</td>
<td>------------</td>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>8632</td>
<td>MATH</td>
<td>098</td>
<td>Elementary Algebra</td>
<td>Kraske W</td>
<td>28</td>
<td>28</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td>8642</td>
<td>MATH</td>
<td>099</td>
<td>Intermediate Algebra</td>
<td>Arbuckle K</td>
<td>32</td>
<td>18</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>8662</td>
<td>MATH</td>
<td>105</td>
<td>College Algebra</td>
<td>Arbuckle K</td>
<td>32</td>
<td>16</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>8666</td>
<td>MATH&</td>
<td>148</td>
<td>Bus Calculus</td>
<td>Arbuckle K</td>
<td>1</td>
<td>1</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>8672</td>
<td>MLT</td>
<td>100</td>
<td>Intro to MLT</td>
<td>Tracy P</td>
<td>10</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8682</td>
<td>MLT</td>
<td>210</td>
<td>Clinical Exper 1</td>
<td>Wilson-McNam</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8692</td>
<td>MLT</td>
<td>213</td>
<td>K2 Hematology</td>
<td>Wilson-McNam</td>
<td>5</td>
<td>3</td>
<td>901</td>
<td></td>
</tr>
<tr>
<td>8702</td>
<td>MLT</td>
<td>214</td>
<td>Hematology Lab</td>
<td>Tracy P</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8712</td>
<td>MUS</td>
<td>161</td>
<td>Community Chorus</td>
<td>Arbuckle K</td>
<td>5</td>
<td>0</td>
<td>off campus</td>
<td></td>
</tr>
<tr>
<td>8722</td>
<td>NAL</td>
<td>101</td>
<td>N A Lang I: nselxcim</td>
<td>CCTLPP</td>
<td>15</td>
<td>5</td>
<td>off campus</td>
<td></td>
</tr>
<tr>
<td>8732</td>
<td>NAL</td>
<td>102</td>
<td>N A Lang II: nselxcim</td>
<td>CCTLPP</td>
<td>15</td>
<td>3</td>
<td>off campus</td>
<td></td>
</tr>
<tr>
<td>8742</td>
<td>NAL</td>
<td>103</td>
<td>N A Lang III: nselxcim</td>
<td>CCTLPP</td>
<td>15</td>
<td>1</td>
<td>off campus</td>
<td></td>
</tr>
<tr>
<td>8752</td>
<td>NAL</td>
<td>205</td>
<td>N A Lang V: nselxcim</td>
<td>CCTLPP</td>
<td>15</td>
<td>1</td>
<td>off campus</td>
<td></td>
</tr>
<tr>
<td>8782</td>
<td>NURS</td>
<td>059</td>
<td>Nurs Assit Basic pt car</td>
<td>Dorsten C</td>
<td>10</td>
<td>9</td>
<td>209</td>
<td></td>
</tr>
<tr>
<td>8792</td>
<td>NURS</td>
<td>101</td>
<td>Foundations/Nursing</td>
<td>Smith S</td>
<td>18</td>
<td>18</td>
<td>209</td>
<td></td>
</tr>
<tr>
<td>8802</td>
<td>NURS</td>
<td>101L</td>
<td>Found Nursing Lab</td>
<td>Smith S</td>
<td>18</td>
<td>18</td>
<td>209</td>
<td></td>
</tr>
<tr>
<td>8812</td>
<td>NURS</td>
<td>112</td>
<td>Nurs Success</td>
<td>Smith S</td>
<td>18</td>
<td>7</td>
<td>209</td>
<td></td>
</tr>
<tr>
<td>8822</td>
<td>NURS</td>
<td>201</td>
<td>Nursing 201</td>
<td>Coghlan A</td>
<td>18</td>
<td>16</td>
<td>209</td>
<td></td>
</tr>
<tr>
<td>8832</td>
<td>NURS</td>
<td>201L</td>
<td>Nursing 201 Lab</td>
<td>Coghlan A</td>
<td>18</td>
<td>16</td>
<td>208</td>
<td></td>
</tr>
<tr>
<td>8842</td>
<td>NURS</td>
<td>210</td>
<td>Senior Seminar I</td>
<td>Coghlan A</td>
<td>18</td>
<td>14</td>
<td>209</td>
<td></td>
</tr>
<tr>
<td>8852</td>
<td>PCOL</td>
<td>101</td>
<td>Pharmacology I</td>
<td>Coghlan A</td>
<td>18</td>
<td>18</td>
<td>209</td>
<td></td>
</tr>
<tr>
<td>8862</td>
<td>PEH</td>
<td>103</td>
<td>Body Cond:Wt Train</td>
<td>Milner M</td>
<td>20</td>
<td>14</td>
<td>off campus</td>
<td></td>
</tr>
<tr>
<td>8872</td>
<td>PEH</td>
<td>114</td>
<td>Bowling</td>
<td>Widman L</td>
<td>24</td>
<td>9</td>
<td>off campus</td>
<td></td>
</tr>
<tr>
<td>8882</td>
<td>PEH</td>
<td>121</td>
<td>Pilates</td>
<td>Milner M</td>
<td>16</td>
<td>10</td>
<td>off campus</td>
<td></td>
</tr>
<tr>
<td>8892</td>
<td>PEH</td>
<td>180</td>
<td>Personal Wellness</td>
<td>Jones L</td>
<td>26</td>
<td>14</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>8902</td>
<td>PHIL</td>
<td>211</td>
<td>Intro to Ethics</td>
<td>Lindeblad D</td>
<td>26</td>
<td>20</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>8912</td>
<td>POLS&</td>
<td>202</td>
<td>American Government</td>
<td>Lindeblad D</td>
<td>26</td>
<td>21</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>8922</td>
<td>PSYC&</td>
<td>100</td>
<td>General Psychology</td>
<td>Breckenridge</td>
<td>26</td>
<td>21</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td>8932</td>
<td>SDS</td>
<td>101</td>
<td>Study Skills</td>
<td>Turner V</td>
<td>26</td>
<td>22</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>8942</td>
<td>SDS</td>
<td>101</td>
<td>Study Skills</td>
<td>Riling R</td>
<td>26</td>
<td>17</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td>8952</td>
<td>SDS</td>
<td>105</td>
<td>Effective Leadership</td>
<td>Millard L</td>
<td>20</td>
<td>12</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>8962</td>
<td>SOC</td>
<td>225</td>
<td>Soc of Family</td>
<td>Jones L</td>
<td>26</td>
<td>15</td>
<td>302</td>
<td></td>
</tr>
<tr>
<td>8972</td>
<td>SPAN&</td>
<td>121</td>
<td>Spanish I</td>
<td>Smith S</td>
<td>26</td>
<td>17</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>8982</td>
<td>SPAN&</td>
<td>121</td>
<td>Spanish I</td>
<td>Villa B</td>
<td>26</td>
<td>10</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>9102</td>
<td>ABE</td>
<td>076</td>
<td>Int GED</td>
<td>Brantner A</td>
<td>30</td>
<td>30</td>
<td>302</td>
<td></td>
</tr>
</tbody>
</table>
Wenatchee Valley College
Wells Hall
Building Assessment
Washington State Project No. 2012-190 A (1)

April 2013
Table of Contents

1.0 EXECUTIVE SUMMARY

2.0 INTRODUCTION

2.1 Study Purpose
2.2 Wells Hall Overview

3.0 BUILDING ASSESSMENT - ARCHITECTURAL

3.1 Building Code Overview/ Life Safety
3.2 Building Envelope
3.3 Building Accessibility
3.4 Flexibility
3.5 Recommendation

4.0 BUILDING ASSESSMENT – STRUCTURAL

4.1 Observations
4.2 Conclusions

5.0 BUILDING ASSESSMENT – MECHANICAL

5.1 Mechanical Site Utilities
5.2 Mechanical Equipment
5.3 Heating System
5.4 Cooling Systems
5.5 Ventilation Systems
5.6 Controls
5.7 Plumbing
5.8 Code Deficiencies

6.0 BUILDING ASSESSMENT – ELECTRICAL

6.1 Electrical Site Utilities
6.2 Power
6.3 Lighting
6.4 Fire Alarm
6.5 Telecom
6.6 Code Deficiencies
SECTION 1
EXECUTIVE SUMMARY
Section 1 Executive Summary

1.0 Executive Summary

The Wells Hall Building Assessment was initiated and contracted through Wenatchee Valley College to evaluate and document the current physical deficiencies of Wells Hall as part of the 2012 Master Plan Study.

A site visit to the Wenatchee Valley College campus was conducted on October 2, 2012. The assessment team consisted of the following members:

- Becky Barnhart Integrus Architecture, P.S.
- Ty Landis Integrus Architecture, P.S.
- Aaron Zwanzig Integrus Architecture, P.S. (Structural)
- Jake Laete MW Consulting Engineers, Mechanical
- Dean Algeo MW Consulting Engineers, Electrical

Wenatchee Valley College provided original construction record drawings and subsequent alteration/revision drawings that were reviewed by the team after the visit. The following drawings were reviewed:

- 1951 Liberal Arts Building – Original Wells Hall
- 2002 Arts Program Remodel – Addition of Ceramics Studio

The site visit started with an informational meeting that included members of the Wenatchee Valley College Administration and Facilities. An overview of the Wenatchee Valley Master Plan was presented and discussed. Individual building and system overviews were then provided by the WVC Staff for the assessment team. The team was then escorted through the building by facilities staff to observe and document the existing condition deficiencies.

The following assessment is not intended to encompass all issues present, but rather highlight those concerns identified during visual observation of the building (to the extent that items were exposed to view), discussions with college staff, and subsequent review of the building record drawings. This report should not be interpreted as a full plan review or analysis of Wells Hall.
SECTION 2
INTRODUCTION
2.0 INTRODUCTION

This Building Assessment was authorized by and contracted through Wenatchee Valley College to evaluate and document the current physical deficiencies of Wells Hall as part of the 2012 Master Plan study.

2.1 Study Purpose

The purpose of the study is to evaluate, assess and document the deficient existing physical conditions for Wells Hall relative to life safety, building envelope, accessibility (ADA), structural systems, and mechanical/plumbing/electrical systems.

2.2 Wells Hall overview

Wells Hall (Building "C" on campus map below) is located in the center of the Wenatchee Valley College campus north of 5th Street and west of Ringold Street.

constructed in 1952, Wells Hall is the oldest operating instructional building within Washington State's Community and Technical College System.

This single-story building consists of four staggered classroom wings—two to the west and two to the east—branching off of a main corridor trunk running north and south. The original design concept was to incorporate a mixture of classrooms and offices for each program running the length of each wing to house Physical Sciences, Chemistry, Biology, Engineering, English, and Social Studies. The remaining northern portion of Wells Hall was designed to house the Drama and Music programs including a Theater, Band room, Practice Rooms, and additional offices.

Throughout the years, the building has undergone a series of remodels, including restroom additions in the third wing, provisions for breakout spaces and offices, and replacement of concrete block walls with storefront glazing systems in the second and fourth wings. Despite these modifications, the building essentially follows its original configuration. In 2002, an addition and remodel project was conducted for the Arts Program and the Ceramics Studio was added as well as restrooms adjacent to the Band Room at the north end of the building.

Wells Hall is currently being utilized by Wenatchee Valley College for many different programs, departments and functions including:

- Social Sciences (Sociology, Psychology, Communication, Political Science)
- World Languages
- Instructional Services (Technical and Applied Sciences, Liberal Arts and Sciences)
Section 2

Introduction

- Basic Skills, Continuing Education, Workfirst, Extended learning (ABE and ESL)
- History/Anthropology
- Arts/Ceramics
- Drama Theater
- Computer Labs
- Offices

The existing Drama Theater continues to be utilized for drama productions but also accommodates large classes via movable furniture.

Exterior finishes of Wells Hall are primarily stucco/Dryvit and vertical seam metal siding. Aluminum storefront windows with glass block clerestories are set back from the metal siding to provide relief along the facade as well as shading for the interior spaces. Brick and stone are used to emphasize entries and seat walls at areas of pedestrian interaction. Interior finishes and treatments are varied amongst the wings in the building.

Foundations are constructed of standard concrete spread footings. The structural system for Wells Hall is composed of sawn lumber roof joists spanning between steel girders supported by steel columns. The lateral system for the building consists of concrete block shear walls infilled between steel columns. Lateral forces from the roof diaphragm are resisted by steel frames interacting with block walls, which form a strut-and-tie system with diagonal compression struts in the block walls and tension ties in the steel columns.
SECTION 3
BUILDING ASSESSMENT - ARCHITECTURAL
3.0 Building Assessment

Applicable Building Codes

Building codes utilized throughout this analysis represent the standard by which the building has been assessed and, therefore, the standard by which a deficiency is defined. Applicable building codes referenced throughout the report include the following:

- 2009 International Building Code (IBC)
- ASCE 11-20 Guideline for Structural Condition Assessment of Existing Buildings
- 2003 American National Standards Institute (ANSI) ICC A117.1
- 2009 Washington State Energy Code
- 2009 International Mechanical Code
- 2009 International Electrical Code

3.1 Building Code Overview/Life Safety

A fundamental concept in the design of life safety systems is the idea that occupants should be able to safely exit a building in the event of an emergency. Occupancy classifications and construction type are utilized to determine maximum egress travel distances, size and configuration of exits, etc. Special occupancy requirements, such as those that address stages, are then applied in addition to the general egress requirements for the building.

The following sections note the general assumptions made about construction type and occupancy to determine the basic guidelines for the egress system within the building. Construction not in compliance with these requirements is considered to negatively impact the life safety system within the building and, therefore, the overall safety of the occupants within Wells Hall.

Use and Occupancy Classifications (IBC Chapter 3)

Wells Hall is a mixed-use occupancy building with A-1, B, and S-1 occupancy groups.

The Drama Theater is classified as a Group A-1 occupancy. Group A-1 assemblies are defined as: "A building or portion of a building, usually with fixed seating, intended for the production and viewing of the performing arts or motion pictures." The original Auditorium was designed to hold 500 seats, however seating was never installed. In the 2002 addition, 30 feet of the original 75 feet in length of the Theater was converted to classrooms. Per Reference 1104.18, exits and aisles shall be so located so that the travel distance to an exit door is less than 200 feet in non-sprinklered buildings. Exits appear to meet this requirement. Because fixed seats were never installed, egress capacity is probably oversized.

The balance of the facility is a Group B occupancy with accessory storage (S-1). Group B occupancy is defined as: "A building or structure, or portion thereof, for office, professional or service. Educational occupancies for students above the twelfth grade are considered "B" occupancies. Per section 1016, maximum travel distance to reach an exit is 200 feet without a sprinkler system.

Type of Construction

Wells Hall qualifies as Type III construction. Type III construction are those types of construction in which the exterior walls are of noncombustible materials and the interior building elements are of any material permitted by the code (Table 601-IBC). Exterior walls utilize primarily cast-in-place concrete or brick veneer backed by 6” Concrete Masonry Units (CMU). The primary structural frame is made up of sawn lumber roof joists spanning between steel girders, which are supported by steel columns. Steel structure has not been fireproofed.

The building does not contain an automatic fire sprinkler system in accordance with Section 903.3.1. Per
Table 503, in a building of Type III construction with a B occupancy without modifications 19,000SF is the maximum allowable area. The total building area is 41,732SF. Fusible links have been strategically located to separate Wells Hall into smaller buildings which meet the 19,000 SF requirement.

Special Use & Occupancy

The stage for the Drama Theater located in Wells Hall classifies as a special use occupancy as outlined in IBC Section 410. In addition to the general requirements for the building, the IBC requires that a series of supplemental requirements are met to address these unique uses.

The performance area and the backstage support areas all classify as the parts of the stage. In Wells Hall, the stage is approximately 1,170 square feet. Per Section 410.3.7 "Stage Ventilation," stages that exceed 1,000 square feet require a means of emergency ventilation and an approved automatic sprinkler system. Since the Drama Theater does not contain an automatic fire sprinkler system, this portion of the building is not in compliance with building codes.

Exits and Egress

Wells Hall appears to have an ample quantity of exits and exit widths appropriately spaced for egress from the building. However, many of the entrances/exits are in need of repair. Over the years, freeze/thaw cycles have caused a few of the entry concrete slabs to crack and heave, making access and maintenance for snow and ice removal difficult (Photo 1). Walk-off mats do not meet the \(\frac{1}{2} \)" maximum height restriction, and walls show damage from water infiltration at primary building entrances (Photo 2). In addition, door frames and thresholds over the life of the building have been damaged and no longer have working seals so water and debris accumulate beneath (Photo 3). Level changes also occur between the various wings of the building requiring ramps as an integral portion of the egress system. However, ramps have not been positioned to allow a level landing surface immediately in front of doors (Photos 17A and 17B).

One of the greatest difficulties the users have in this building is the lack of appropriately sized lecture/teaching areas. This need has manifested itself as spaces which were originally designed as conference rooms and are now being utilized for a higher occupancy lecture-style classroom. In these cases, chairs and desks are packed into rooms with no aisles. This condition makes egress from the space difficult and non-compliant with current building codes (Photo 8).

General safety is also a concern within Wells Hall. Several classrooms have ceiling tiles that have begun to fall down through multiple layers of ceiling grids (Photo 11). Electrical panels are covered and not accessible due to inadequate wall space for pinups (Photo 12). Larger classrooms also do not have panic hardware on doors. Although filtration has been added, water at the tap is discolored.

Plumbing Fixture Requirements

Despite renovations to restrooms throughout the facility, restrooms and drinking fountains do not meet the minimum number of fixture requirements. Original piping is still present and visible in the corridors (Photo 13). Several locations have non-GFCI electrical outlets near a water source and pose a potential shock hazard to occupants (Photo 14).

3.2 Building Envelope

Thermal and Moisture Protection

Insulation

Exterior walls typically consist of brick backed by 6" concrete masonry units (CMU) with a layer of 1" rigid between or concrete.
Section 3 | Building Assessment - Architectural

Wenatchee Valley College is located in Zone 2 as outlined in Washington State Energy Code. Zone 2 (Table 13-2) requires that steel construction exterior walls be insulated with R-7.5 continuous insulation for a total overall value of R-13 and the roof be insulated with R-30 insulation. The exterior walls as designed do not contain enough insulation to meet current code requirements. The roof contains minimal insulation, but also falls well short of energy code requirements.

Additional insulation should be added to the roof and walls to increase the overall thermal efficiency of the building envelope.

Membrane Roofing

Wenatchee Valley College has completed many roof updates on Wells Hall. The roof membranes as observed appear to be in good condition; however, ceiling tiles and wall damage show proof of leaks over the life of the structure (Photo 15A and 15B). Paint is peeling off of coping and sealant appears to be reaching its lifespan at multiple roof locations.

Windows and Glazing

The windows that have been installed throughout the building are outdated and seals have popped (Photo 16A and 16B) resulting in “hazing” between the glazing panels which block vision. Due to the aesthetics, many of the instructors keep the window blinds closed making classes dark and uninviting. Wenatchee Valley College reports that they experience a great deal of air infiltration at the windows.

The inefficiency of the current window and glazing system increases the heating and cooling loads for the HVAC equipment. As windows have a significant role in the energy profile of the building, they should be engineered to optimize energy performance.

3.3 Building Accessibility

As of July 1, 2010, the amended WAC 51-50 has adopted ICC A117.1-2003 Accessibility and Usable Buildings and Facilities as the governing accessibility regulations in Washington State, including Appendix E of the IBC.

A building is deemed "accessible" when it complies with the provisions set forth in both the 2009 International Building Code and the American National Standards Institute (ANSI) ICC 117.1. These provisions provide a continuous unobstructed path from a site arrival point through the building to enable a disabled person to approach and utilize the facility. The numerous deficiencies seen throughout the building indicates that an accessible route does not exist for many components within Wells Hall.

Over the life of the building, Wenatchee Valley College has made improvements relative to building accessibility from the original design. However, a number of deficiencies are still present within Wells Hall and should be addressed.

- Floor Surfaces- Changes in Level (ANSI 303)
 Changes in level of 1/4" maximum shall be permitted to be vertical. However, thresholds throughout the building do not always comply with this requirement.

 Ramps do not have required landings and handrails do not extend 1'-0" past the top of the ramp (Photo 17A and 17B).

- Door Hardware and Access (ANSI 404.2.6)
 Handles, pulls, locks, and other operable parts on accessible doors shall have a shape that is easy to grasp with one hand and does not require tight grasping, pinching, or twisting of the wrist to operate.
Much of the hardware throughout the building is outdated and does not meet accessibility standards (Photo 18A and 18B). Fire doors do not have an integral safety mechanism to release them in the event that a person is caught within the path of the door. This poses a potential crushing hazard to occupants (Photo 19A and 19B).

- Accessible Drinking Fountains (ANSI 602.1, IBC 1109.5)
 At least 50% but not less than one drinking fountain shall be accessible. They shall comply with the clear floor spaces of 36” for a forward approach and shall have required operable parts for the amount of building occupants.

 It does not appear there is a sufficient amount of drinking fountains to serve the amount of building occupants.

- Wheelchair Turning Radius at Restrooms (ANSI 404.2.3)
 Depending on the direction of approach, minimum clearances are required at the push and pull side of doors to allow a wheelchair to maneuver within spaces.

 The placement of doors relative to walls and the approach to toilet compartments throughout the building do not meet these clearances on either the push or pull sides of doors, making it difficult for wheelchair-bound individuals to maneuver at entrances.

- Exposed Pipes and Surfaces (ANSI 606.6)
 Water supply and drains under lavatories and sinks shall be insulated or otherwise configured to protect against contact.

 Pipes in all the toilet rooms are currently exposed and pose a burn risk to wheelchair-bound individuals and children (Photo 20).

- Accessible Kitchenettes (ANSI 804)
 Accessible kitchenettes are required to provide adequate clearance and routes, appropriate work surfaces and sink access. However, the kitchenette within the President’s Conference Room does not meet any of these standards. The kitchen sink also drains directly to exterior of building posing a potential health hazard.

- Grab Bars (ANSI 609)
 Vertical grab bars have not been provided within accessible stalls or ambulatory stalls.

3.4 Flexibility

One of the greatest difficulties Wenatchee Valley College has in this building is the lack of appropriately sized lecture/teaching areas to accommodate 35-40 people in a seminar style environment. Many of the interior walls are structural CMU, so they are difficult to modify or remove. Thus, there are very few classrooms that can accommodate current class needs and sizes and WVC struggles to schedule classes within each school day. This results in overcrowding as spaces are utilized for a larger occupancy than they were originally designed for (Photo 8).

A/V and lecture support are another issue in the classrooms. As many of these rooms have been repurposed from their original function, classrooms have awkward teaching spaces and a web of exposed cords (Photo 9) as Wenatchee Valley College attempts to accommodate technology. In fact, Wenatchee Valley College finds it difficult to schedule classes within the building as spaces that have been repurposed as classrooms have loud mechanical noise that conflicts with speech legibility and becomes “undesirable” space for faculty to teach within. When possible, teachers move classes from space to space to better accommodate their infrastructure and teaching needs (Photo 10).
3.5 Recommendation

In order to address life safety, accessibility, technology upgrades, and energy efficiency requirements, a complete renovation would need to be undertaken within Wells Hall. However, the building’s footprint and structural system greatly restricts the floor plan modifications that could be made to address the quantity and relative size of the classroom spaces to meet today's classroom standards. As such, it is likely that Wells Hall cannot meet the functional and programmatic needs of Wenatchee Valley College, even with an expansive renovation. Consideration should be given to maintaining the Ceramics wing addition in future plans as it is still within its useful life.
Section 3 Building Assessment - Architectural

Photo 1 – Frost heave at entry

Photo 2 – Water damage and repair at stone entry

Photo 3 – Accumulation of debris/water damage at sill
Photo 4 – Repurposed space with inadequate teaching walls/space for faculty to maneuver

Photo 5 – Windows from prior administrative program are no longer desirable for current use and have been blocked by paper to address visual privacy issues.

Photo 6 – Clerestories have been partially painted over to address glare issues within repurposed spaces
Photo 7 – Insufficient infrastructure and CMU wall construction has resulted in unsightly wiring around most classrooms

Photo 8 – Repurposed space which is over capacity and lacks appropriate egress requirements

Photo 9 – Telecom umbilical at teaching station to address insufficient infrastructure
Section 3 | Building Assessment - Architectural

Photo 10 – Classes shift from space to space as technology needs cannot be addressed by the infrastructure within Wells Hall

Photo 11 – Original tiles posed a safety hazard as they fall and displace the ceiling below
Photo 12 – Lack of tackable wall surface results in electrical panels acting as bulletin boards.

Photo 13 - Original plumbing for drinking fountain within corridor is exposed and can be accessed by students.
Section 3 Building Assessment - Architectural

Photo 14 – Lack of GFCI outlet adjacent to water source

Photo 15A – Peeling paint as a result of water damage

Photo 15B – Evidence of previous water damage on ceiling tiles
Photo 16A – Hazing of windows as glazing seals allows water migration between glazing.

Photo 16B – Unsightly window hazing and drafty construction results in teachers leaving blinds perpetually closed within classrooms.

Photo 17A – Ramp in corridor (along egress path) lacks level surface prior to placement of doors.
Section 3 Building Assessment - Architectural

Photo 17B – Location of handrail relative to bottom of ramp does not meet egress requirements

Photo 18A – Original door closers do not meet force limitations for accessibility requirements

Photo 18B – Original panic hardware does not meet force limitations for accessibility requirements
Section 3
Building Assessment - Architectural

Photo 19A – Fire doors between wings

Photo 19B – Fire doors between wings

Photo 20 – Exposed plumbing poses burn hazard
4.0 BUILDING ASSESSMENT – STRUCTURAL

In October of 2012, Integrus Structural was asked to participate with a team of professionals to assess the structural feasibility of remodeling the facility to function under a new academic program. Based on the current building layout and inflexible structural systems, it is assumed a significant remodel effort would be required. As a result, the focus was on assessing what must be accomplished to meet current code requirements for seismic design. Site observations followed the ASCE 11 Guideline for Structural Condition Assessment of Existing Buildings and ASCE 31 Seismic Evaluation of Existing Buildings for a walk-through condition evaluation and recommendation. Observations were limited to visible elements only. No material testing was performed as a part of this report.

The building construction is made up of sawn lumber roof joists spanning between steel girders, which are supported by steel columns. Foundations are constructed of standard concrete spread footings. The lateral system for the building consists of concrete block shear walls infilled between steel columns. Lateral forces from the roof diaphragm are resisted by steel frames interacting with block walls, which form a strut-and-tie system with diagonal compression struts in the block walls and tension ties in the steel columns.

4.1 Observations

In general, the existing building structure was observed to be in a fair state. No signs of significant differential settlement or structural distress were observed. Steel column and beam members appeared to be in good repair. With the exception of minor cracking near a few window and door jambs, concrete block units and joints appeared to be sound. Foundations appeared to be generally level and uncracked. Areas of water damage to ceiling tiles and paint on concrete window sills was noted.

The following deficiencies were noted during our walk-through and review of available documentation:

- A large portion of the shear walls in the first wing had been removed in an undocumented remodel.
- The construction documents indicated that there is not a direct load path from the roof diaphragm into the shear walls.
- Only one line of shear walls has been provided in the east-west direction in each of the wings.

4.2 Conclusions

Our understanding of seismic events and their effect on building structures has increased significantly since the 1950s, which was when this building was designed. In that era, structural designs focused on increasing the size and strength of structural elements in order to resist lateral forces. That practice produced many facilities like Wells Hall, which were very rigid and stiff. The observed structural performance of these types of buildings during earthquake events has led to a change in design philosophy. We now understand that safe performance of building structures is realized by designs which possess both strength and ductility, which allow buildings to flex during an earthquake without breaking.

A significant remodel of this facility would require that the lateral force resisting system for the building meet current code standards. Although the lateral system used in Wells Hall provides a complete load path for forces to pass from the roof diaphragm to the foundation, there are a number of deficiencies that would need to be addressed. The lateral system does not provide a direct load path; it relies on mechanisms not permitted in current building codes, it does not provide redundancy, and has been modified from its original configuration.

- The transfer of lateral forces between the roof diaphragm and shear walls is indirect, relying on cross-grain bending in wood roof joists. Current design practices require a direct load path for lateral forces and do not permit wood to resist forces in cross-grain bending.
- The lateral force resisting system functions through the development of compressions struts in block walls and tension ties in steel columns by way of friction and bearing. Codes in use today require positive anchorage between elements in the lateral force resisting system and would not allow the use of friction or bearing in resisting or transferring forces.
There is a lack of redundancy in the east-west direction in each of the wings due to the fact that there is only one line of shear walls provided. Current design standards require that there be at least two lines of resistance to lateral forces in each direction to ensure that the building does not become unstable in the event that one of the lines degrades during a lateral event.

An undocumented remodel has compromised the lateral system in the first wing. Because portions of the single line of shear walls in that wing were removed, a more comprehensive analysis would need to be performed to confirm the adequacy of the shear walls which remain.

Considering the scope of the deficiencies noted above, the process of developing and implementing the necessary upgrades to bring the lateral systems for the building into agreement with current design practices would likely require a significant amount of cost and effort.
SECTION 5
BUILDING ASSESSMENT - MECHANICAL
5.0 BUILDING ASSESSMENT – MECHANICAL

In general, the mechanical systems have exceeded the normal expected economic life and should not be expected to serve in any extended period if major renovations are planned or implemented. It would be prudent from a reliability and energy conservation point of view to include new equipment in any significant modification to the building and its use.

5.1 Mechanical Site Utilities

Originally, steam was provided to Wells Hall and the adjacent Brown Library from central steam generators in Batjer Hall via underground tunnels. The steam produced hot water by utilizing a steam-to-water heat exchanger. The hot water was then pumped around the building to various terminal units to deliver heat to interior spaces. This system was replaced by dedicated boilers located in Wells Hall to produce heating water for its use as well as providing for Brown Library via an underground tunnel.

The chilled water for the Wells Hall air conditioning system is provided from the central 400-ton water-cooled chiller located in Batjer Hall, which was installed in 1999. The chilled water is likewise routed through underground tunnels to Wells Hall and Brown Library.

5.2 Mechanical Equipment

There is a mix of mechanical equipment in Wells Hall. Many of the offices are served by floor-mounted vertical fan coils. These units are connected to a four-pipe system that sends chilled and hot water to coils inside the cabinet. Depending on the demand in the room, the cooling or hot water coil valves open to allow the medium to flow through the coil. An integral fan circulates room air through the coil. Many of these units are showing their age. There are dents, scuffs, and chipped paint from normal use. In some instances, the fan coils are used as extra storage shelves for items that block-off the air flow from the up-blast grilles. The hot and chilled water piping has sections of missing or torn insulation as well as stains and corrosion.

Some ceiling-mounted air handling units utilize return air plenums, which contain non-rated cabling and combustible materials.

The large central air handling units in the Theatre area are old looking, but most seemed to run smoothly and quietly. Good maintenance has kept up the bearings, belts, and lubrication. However, problems were noted in the President’s Conference Room from a noisy fan coil and fan imbalance.

The areas with Computer Labs and Server Rooms are served by dedicated split system DX units for independent year around cooling.

5.3 Heating System

In 1996, the steam supply from Batjer Hall was removed and abandoned in place due to leaks at some locations, increased burden on maintaining aging steam equipment, and general inefficiency of piping steam and condensate long distances. Two cast iron sectional boilers were installed in the basement of Wells Hall to serve its needs as well as the adjacent Brown Library, which was also eliminated from the central steam pipes from Batjer Hall.

The two boilers are in good condition for having nearly 20 years of service life. Generally, cast iron boilers have a service life of 35 years (ASHRAE Applications Service Life Table, 2007) if the proper water chemistry is maintained and flue gas is not allowed to condense. The burners are atmospheric, gas-fired combustion type with dual fuel capability (fuel oil, although none is stored at the site). The burners are rated at 2.5 million BTU/hour each and appear in good shape. The former steam and condensate piping was replaced with heating water pipes in 1996 as well and can have a life expectancy of up to 50 years with good maintenance and water chemistry. A recent water treatment program has been installed to maintain water quality of the heating system.
The heating water is piped to various air handling units, fan coils, and ceiling-mounted terminal units that provide heated air to the various zones. There are occasional spots visible on the ceiling tiles where reportedly the leaks have occurred from pipe joints, valves, coils, etc., and not through the roof material.

5.4 Cooling Systems

Chilled water is supplied to Wells Hall from Batjer Hall via underground pipelines that enter the Mechanical Room. There, the chilled water is further pumped internally throughout the building to the various air handling units, fan coils, and ceiling-mounted terminal units.

It was noted that some pipe insulation was peeling and missing, there was corrosion on some pipe walls, and leaks could be seen in ceiling tiles. The recent installation of a water treatment program should help to lengthen the service life of the pipes.

5.5 Ventilation Systems

Wells Hall encompasses many different roles—there are Faculty and Administration Offices, a Theatre area, Ceramic Arts, Computer Labs, large and small classrooms, and Conference Spaces. These areas are served by different types of air delivery systems, but most basically utilize the available chilled and hot water utilities to provide thermal comfort for the occupants.

Central Air Handling Units

Central air handling units are used in the Theatre area to provide large volumes of distributed airflow over a densely populated area. The units contain a supply fan, heating and cooling coils, air filters, and mixing dampers, which adjust the amount of outside and return air. The units in the Theatre area are older constant-volume units, which regulate the leaving air temperature to provide the required heating or cooling demanded by the space thermostats. The units are equipped with an "economizer cycle", which draws in outside air if suitable for cooling instead of opening the cooling coil valve and using chilled water from the central chiller.

Fan Coil Units

Fan coil units are small, individual office-type units that also have chilled and hot water piped to internal coils (a four-pipe system). The water valves react to the room thermostat and open the proper coil to get heat or cooling. Some fan coils have wall boxes that allow outside air to be introduced through the fan coil to provide ventilation and economizer cycle.

Ceiling-Mounted Terminal Units

There are ceiling-mounted terminal units that are also connected to the chilled and hot water supplies. In this case, the ceiling units are typically connected to a ducted air distribution system. This is common in large classrooms.

Computer Labs and Server Rooms

The Computer Labs and Server Rooms generally are on separate dedicated standalone systems because there is often a need for cooling even in the winter when the central chiller is inoperable (due to the cooling tower being shut down). In these spaces, a refrigerant cooling system is used utilizing an outdoor condensing unit, which is connected to an indoor evaporator.
Radiant Baseboard

Wells Hall has extended wings with a lot of outside wall and window exposure. In these areas, radiant baseboard heaters are incorporated to reduce skin losses. These units are spaced regularly down the hallways and the flow and temperature of the hot water through the pipes are controlled by outside air temperature sensors. These baseboards show their age from the normal wear and tear over the years.

Grilles, Registers, and Diffusers (GRDs)

The grilles, registers, and diffusers are all in rather poor shape. They are dirty from streaks; some are bent and misapplied for the service that is required. Any renovation should include new replacement GRDs with the proper type for the space requirement.

5.6 Controls

The controls used throughout are pneumatic and DDC-type from Landis and Gyr/Powers. There is a central desktop computer terminal used for monitoring and adjustment from the Maintenance Building. Some of the older pneumatic controls have a "hybrid interface", which allows DDC control and monitoring, but the actuation of the valve or damper devise is still thru pneumatic power. The service is provided by the Lynnwood Branch of Landis and Gyr and the service has been satisfactory.

5.7 Plumbing

The existing fixtures are in reasonable condition and there were no general problems reported. There are some new ADA drinking fountains in the corridors and accessible toilets in the restrooms. It was noted that in the ceramics art area that the clay trap under a sink was not large enough and plugged up frequently.

5.8 Code Deficiencies

- Inadequate or missing insulation of pipes.
- Lack of economizer controls.
- Poor windows that allowed condensation to dribble on to sills.
- No use of variable speed drives for pumps or air handling units.
- No fire sprinklers in Wells Hall.
- Lots of skin losses thru clerestory construction.
- Return air plenums that have nonrated materials.
- Lack of adequate ventilation air is suspected from reports of stuffy, warm conditions in some areas.
- Lack of vacuum breaker on janitor or ceramics art sinks.
SECTION 6
BUILDING ASSESSMENT - ELECTRICAL
6.0 BUILDING ASSESSMENT – ELECTRICAL

In general, much of the existing electrical and fire alarm systems in the building are well past their expected useful life. In addition, these systems have numerous issues relating to working space, capacity, co-mingling of systems, and latent code issues as described below. These systems are marginal with the current size and use of the building; any significant remodel or expansion of the building would require extensive upgrades and replacement or remediation of existing systems to provide the necessary capacity and bring the systems up to current codes.

6.1 Electrical Site Utilities

Chelan PUD provides electrical power for the Wenatchee Valley College (WVC) Campus. Buildings on campus derive their electricity from Chelan PUD pad-mounted service transformers. Separate services with transformers and metering are generally provided for each building or small groups of buildings. The service transformers are typically fed from Chelan PUD via a radial feeder from the overhead primary feeders along Fifth Street and Ninth Street.

The electrical service for Wells Hall is a 1,200 amp, 208Y/120 volt, 3-phase, 4-wire system. This service is sub-fed from the main electrical service for the Brown Library Building. The service for the Brown Library is derived from a pad-mounted transformer located on the loading dock.

6.2 Power

Electrical Rooms

The Electrical Rooms at Wells Hall were largely shared spaces having mechanical and telecom equipment in addition to storage located within the space. It is not recommended to co-locate these systems within the same space due to clearance, maintenance, restriction of access to qualified personnel, and code issues. Storage of materials in electrical space is not permitted. Refer to the telecommunications section for further discussion.

Fault Current/Arc Flash

It has become the industry standard to study an electrical system’s available fault current and arc flash energy then to select equipment and post warning signage based on those studies to provide a more safe working environment for electrical personnel. The installed equipment does not appear to have had been studied and no related data, equipment ratings, or warning signage was observed. It is recommended that a power system study be performed on this building to evaluate the ratings of the existing equipment.

Panels

Several panels were observed to have circuits labeled in permanent marker adjacent to the actual breaker on the panel dead-front cover in addition to having a panel schedule. The labeling on the panels was not consistent with the information in the panel schedules. Spare and spaces were not labeled when present. Consistent and clear labeling of electrical equipment is required by code to facilitate routine maintenance and ensure safety.

Most panels observed had little or no breaker space for future expansion. This will heavily impact future projects and facility growth as new electrical equipment will have to be installed to support growth.

Panel #5 is installed in a hallway. Panels should not be installed in spaces readily accessible to the public to ensure that only qualified personnel have access to electrical equipment. In addition, there is a railing in front of panel #5, which blocks the required working clearance. This panel should be relocated to a secure, dedicated space with the proper working clearance.

The main switchboard serving Wells Hall is a 1,200 amp, 208Y/120 volt, 3-phase, 4-wire switchboard manufactured by Gould ITE in 1982. The expected useful life of electrical equipment can vary from 10 to 35
Section 6 Building Assessment – Electrical

years, depending on the type of equipment, ambient temperature, equipment load, and maintenance history. Assuming optimal temperature, maintenance, and loading conditions, this equipment is nearing the end of its useful life. In addition, the age of the equipment makes replacement parts expensive and difficult to locate.

The room housing the main switchboard has only one exit door, which swings opposing the direction of egress from the space. Due to the size of the main switchboard and the geometry of the room, this space is required to have two exits on opposing sides of the switchboard. These two exits must swing in the direction of egress and be equipped with panic hardware.

The equipment observed did not appear to have seismic ratings.

Devices

A mixture of ivory, white, and stainless steel devices plates were observed throughout the facility. The WVC standard for device plates is stainless steel. In addition, several devices were observed to be cracked or broken and in need of replacement.

Several outlets in Kitchen/Break Room areas did not appear to have the required GFCI protection.

General

Many of the technology lecterns were powered with extension cords which are being used as fixed permanent wiring.

The use of multi-wire branch circuits (shared neutrals) is ubiquitous in buildings as new as five years old due to the economic advantages of distributing branch circuitry in this manner. It is expected that all branch circuitry within Wells Hall utilizes multi-wire branch circuits. Recent code revisions have disallowed the use of this type of wiring with the exception of a few special cases. It is permissible to install handle ties across the existing breakers associated with each multi-wire branch circuit; however, the consequences of that would be de-energizing all circuits on the multi-wire branch circuit simultaneously to perform work on any one. Any revisions/additions/renovations to the existing building would be heavily impacted by the existing multi-wire branch circuits, which would have to be completely replaced or upgraded to provide dedicated neutrals.

6.3 Lighting

Fixtures

The existing light fixtures appear to be a mixture of styles installed over a period of time. Corridors had a mixture of surface-mounted wrap, recessed 2’x4’ lay-in with flat diffuser, and 2’x4’ lay-in with parabolic diffuser. In addition, the lamp color from fixture to fixture was varied. Many classrooms where also observed to have dissimilar fixture types and lamp colors are mixed within the same space. Mixing fixture types, lamp colors, and diffusers within the same space can create eye strain for occupants in addition to complicating maintenance efforts. Fixtures within a given space should be of uniform construction, diffusers, and lamp types to minimize eye strain, maximize energy efficiency, and facilitate maintenance.

Fluorescent lamps were largely observed to be 4’ T8-type lamps throughout the facility. T8 fluorescent lamps are have been widely used since the 1980s and are considered aging technology. T5 fluorescent lamps are more recent technology and consistent with the current industry minimum standards for energy efficiency and lamp technology. In addition, LED lamp technology is available and offers significant energy efficiency compared to fluorescent technology. The apparent age of the fixtures would suggest that many are equipped with magnetic ballasts. Modern fluorescent fixtures use electronic ballasts to drive the lamps. Electronic ballasts are more energy efficient than magnetic ballasts and have a lower power factor. The fixtures should be upgraded to fixtures with T5 fluorescent or LED lamps and electronic ballasts.
Emergency egress lighting was not observed in most spaces. Wall-pack type fixtures were not observed and the ceiling fixtures did not appear to have battery backups installed. Wall-pack type fixtures or battery backup in ceiling fixtures should be installed to provide required egress lighting and to provide illumination of the exit discharge.

Exit lights were observed to be installed throughout the corridor and at exit doors. The vintage of the exit lights themselves appeared to be consistent with the rest of the equipment in the building. On many of the observed exit lights, the plastic surrounding the battery compartment showed signs of fatigue and discoloration from excessive heat. Battery life is significantly impacted by operating temperature, testing and maintenance. Under optimal conditions a Lead-acid battery might last between five and ten years. It is expected that most of the exit lights in Wells Hall require replacement due to batteries past their useful life.

Controls

The building has a significant amount of glazing, which provides an abundance of natural light. No daylight harvesting via photocell control in spaces with natural light was observed. For new buildings or significant remodels, the Washington State Non-Residential Energy Code (NREC) requires daylight harvesting, photocell, and occupancy sensor control of lighting in commercial buildings to conserve energy. Exterior lighting was observed to be on during the day. All exterior lighting should have photocell control to provide only nighttime operation. Most spaces were not equipped with occupancy sensors to automatically shut-off lights when not in use. The existing lighting control system predominantly consists of manual toggle switches. The addition of multi-level switching and dimming controls and fixtures would provide more lighting level options for the user and conserve energy. To meet the current energy standards, extensive wiring and equipment upgrades would be required, including: new fixtures/ballasts, dimming components and controls, switches, lighting control panels, control wiring, sensors, and relays.

6.4 Fire Alarm

The existing fire alarm control panel is a Simplex Model 4002 analog fire alarm panel. This model was produced from 1986 to 1994. This panel is likely between 18 and 26 years old and likely beyond its useful life. In addition, replacement/repair parts will become more difficult to acquire moving forward. The campus standard is a Simplex 4100U addressable fire alarm system, which provides networking as well as voice notification capabilities. The existing system is not congruent with the current campus fire alarm equipment standards.

The existing fire alarm system consists of horn strobes, pull stations, and heat detectors. The heat detectors are intended to protect the building; they are not designed to protect occupants. The addition of smoke detectors to the system would provide early warning to occupants and allow maximum time to safely exit the building. The notification coverage was observed to be lacking in several areas. Additional horn strobes should be added to provide adequate notification coverage.

The fire alarm system was observed to be installed almost completely in wiremold raceway. This type of raceway is difficult to install and to disassemble, which makes adding/maintaining the system challenging.

6.5 Telecom

The existing telecommunications equipment is located in Mechanical and Electrical Rooms. The presence of electrical and mechanical equipment in proximity to telecommunications equipment can cause electromagnetic interference (EMI) and radio frequency interference (RFI). The applicable standard recommends 3 meters of separation from any potential sources of EMI or RFI. The locations were observed to be dusty and have the potential for static electricity. There was not a dedicated cooling system for the telecommunications equipment and several of the spaces were warm. The telecom locations did not appear to have adequate grounding bus systems. The location of large electrical equipment adjacent to telecom equipment presents a potential hazard to low-voltage technicians servicing the telecom equipment. The racks and telecom equipment did not appear to have seismic ratings and there were inadequate working clearances.
All telecom equipment should be located in a dedicated space to minimize EMI and RFI, dust, and static electricity and to ensure that only qualified personnel have access to sensitive telecom equipment. The Building Industry Consulting Service International (BICSI) is the industry standard for the design and construction of telecommunication infrastructure. BICSI recommends a minimum Telecom Room size of 10’x11’ for each 10,000 sq. ft. of building space served. In addition 1-meter of clearance is recommended in front of all wall-mounted equipment and in front and to the rear of all equipment racks. The room should be specifically designed to mitigate dust, static electricity, humidity, physical damage, EMI, RFI, and provide access only to authorized personnel. In addition, a dedicated cooling system should be provided to ensure the ambient temperature is within the equipment tolerances.

Some buildings on campus, specifically Van Tassell Hall, have riser-rated telecom cabling installed in roof-mounted pathways. Due to the high ambient air temperature and resulting heating from direct sunlight, the riser-rated cables are exposed to operating temperatures well beyond the manufacturer’s recommendations. The cable sheath can effectively melt inside the pathway.

6.6 Code Deficiencies

- Shared mechanical, electrical and telecom spaces.
- Panels accessible to general public.
- Occupancy control for lighting.
- Daylight harvesting control for lighting.
- User controlled multiple lighting levels.
- Exterior photocell control for lighting.
- Fire alarm notification coverage.
- GFCI protection for outlets in kitchen/break room areas.
- Egress lighting.
- Exit lighting.
- Seismic ratings/bracing on equipment.
- Fault current ratings.
- Arc flash signage/protocol.
- Egress door in main Electrical Room.
- Extension cords used as permanent fixed wiring.
- Telecom equipment clearances.
1.0 EXECUTIVE SUMMARY

2.0 INTRODUCTION
 2.1 Study Purpose
 2.2 Sexton Hall Overview

3.0 BUILDING ASSESSMENT – ARCHITECTURAL
 3.1 Building Code Overview/ Life Safety
 3.2 Building Envelope
 3.3 Building Accessibility
 3.4 Flexibility
 3.5 Recommendation

4.0 BUILDING ASSESSMENT – STRUCTURAL
 4.1 Observations
 4.2 Conclusions

5.0 BUILDING ASSESSMENT – MECHANICAL
 5.1 Mechanical Site Utilities
 5.2 Mechanical Equipment
 5.3 Heating System
 5.4 Cooling Systems
 5.5 Ventilation Systems
 5.6 Grilles, Registers, and Diffusers (GRDs)
 5.7 Controls
 5.8 Plumbing
 5.9 Code Deficiencies

6.0 BUILDING ASSESSMENT – ELECTRICAL
 6.1 Electrical Site Utilities
 6.2 Power
 6.3 Lighting
 6.4 Fire Alarm
 6.5 Telecom
 6.6 Code Deficiencies
Section 1
EXECUTIVE SUMMARY
1.0 Executive Summary

The Sexton Hall Building Assessment was initiated and contracted through Wenatchee Valley College to evaluate and document the current physical deficiencies of Sexton Hall as part of the 2012 Master Plan Study.

A site visit to the Wenatchee Valley College campus was conducted on October 2, 2012. The assessment team consisted of the following members:

- Becky Barnhart Integrus Architecture, P.S.
- Ty Landis Integrus Architecture, P.S.
- Aaron Zwanzig Integrus Architecture, P.S. (Structural)
- Jake Laete MW Consulting Engineers, P.S. (Mechanical)
- Dean Algeo MW Consulting Engineers, P.S. (Electrical)

Wenatchee Valley College provided original construction record drawings and subsequent alteration/revision drawings that were reviewed by the team after the visit. The following drawings were reviewed:

- 1968 Maintenance Building – Original Sexton Hall
- 1999 Computer Lab Remodels

The site visit started with an informational meeting that included members of the Wenatchee Valley College Administration and Facilities. An overview of the Wenatchee Valley Master Plan was presented and discussed. Individual building and system overviews were then provided by the WVC Staff for the assessment team. The team was then escorted through the building by facilities staff to observe and document the existing condition deficiencies.

The following assessment is not intended to encompass all issues present, but rather highlight those concerns indentified during visual observation of the building (to the extent that items were exposed to view), discussions with college staff, and subsequent review of the building record drawings. This report should not be interpreted as a full plan review or analysis of Sexton Hall.
SECTION 2
INTRODUCTION
2.0 INTRODUCTION

This Building Assessment was authorized by and contracted through Wenatchee Valley College to evaluate and document the current physical deficiencies of Sexton Hall as part of the 2012 Master Plan Study.

2.1 Study Purpose

The purpose of the study is to evaluate, assess, and document the deficient existing physical conditions for Sexton Hall relative to life safety, building envelope, accessibility (ADA), structural systems, and mechanical/plumbing/electrical systems.

2.2 Sexton Hall Overview

Sexton Hall (Building "G" on campus map) is located on the north edge of the Wenatchee Valley College Campus along 9th Street.

![Campus Map](image)

Constructed in 1968, the single-story building is divided into two halves separated by a prominent north/south running corridor. A lower level Mechanical Room is also present. The west half originally housed art studios, shops, locker rooms, and storage, while the east half housed classrooms, faculty offices, and more shops surrounding a central outdoor courtyard. Programs for these shops and studios included: Photography, Electronics, Ceramics, Art, and Forestry.

Sexton Hall is currently being utilized by Wenatchee Valley College for many different programs, departments and functions including:

- English
- Business/Business Tech
- Drafting
- Industrial Electronics
- Computer labs
- Robert Graves Gallery

The Robert Graves Gallery was constructed when the outdoor courtyard was converted into a central atrium. The Gallery was created to recognize Mr. Graves’ efforts to establish a public art gallery for the citizens of North Central Washington and to honor his 34-year teaching career at Wenatchee Valley College.
Section 2

Introduction

Although some remodeling has taken place to change the programming, such as creating computer labs in the northwest corner and enclosing the central courtyard, the building continues to follow its original configuration.

Exterior finishes of Sexton Hall are primarily CMU walls with marblecrete. Cracking is visible at various entry points and at locations where patching has occurred (i.e. removal of individual air conditioning units). Windows throughout are punched aluminum storefronts set back to avoid glare and harsh sun, sunscreens are incorporated on the south side. Clerestories at the building provide diffused natural light into the interior. Building entries are noted by roof overhangs are set back providing entry hierarchy. Interior treatment is primarily painted CMU block.

The building foundations are constructed of standard concrete spread footings. The structural system for Sexton Hall composed of sawn lumber roof joists spanning between glu-lam beams, which are supported by concrete block walls.
SECTION 3
BUILDING ASSESSMENT - ARCHITECTURAL
3.0 Building Assessment

Applicable Building Codes
Building codes utilized throughout this analysis represent the standard by which the building has been assessed and, therefore, the standard by which a deficiency is defined. Applicable building codes referenced throughout the report include the following:

- 2009 International Building Code (IBC)
- ASCE 11-20 Guideline for Structural Condition Assessment of Existing Buildings
- 2003 American National Standards Institute (ANSI) ICC A117.1
- 2009 Washington State Energy Code
- 2009 International Mechanical Code
- 2009 International Electrical Code

3.1 Building Code Overview/ Life Safety

A fundamental concept in the design of life safety systems is the idea that occupants should be able to safely exit the building in the event of an emergency. Occupancy classifications and construction type are utilized to determine maximum egress travel distances, size and configuration of exits, etc.

The following sections note the general assumptions made about construction type and occupancy to determine the basic guidelines for the egress system within the building. Construction not in compliance with these requirements is considered to negatively impact the life safety system within the building and, therefore, the overall safety of the occupants within Sexton Hall.

Use and Occupancy Classifications (IBC Chapter 3)

Sexton Hall was originally designed around a C - Vocational building occupancy type (C- UBC). The building was remodeled in 1999 and converted to classrooms and Computer Labs having a Group B occupancy. Group B occupancy includes the use of a building or structure, or a portion thereof, for office, professional or service-type transactions, including storage of records and accounts. This includes educational occupancies for students above the 12th grade. Per Table 1016.2 is 200 feet without sprinklers. Building complies with maximum travel distances.

Type of Construction

Sexton Hall, which is approximately 27,599 sq. ft., as per the requirements, would qualify as Type V-1 hour rated construction. The building does not contain an automatic fire sprinkler system in accordance with Section 903.3.1.

The original 1966 construction drawings classifies Sexton Hall as Type V-1 hour rated construction. Type V-1 hour rated are those types of construction in which the exterior and interior bearing walls are 1-hour rated as well as the primary structural frame, floor, and roof construction and associated secondary members (Table 601-IBC). The 1999 remodel of 5,520 sq. ft, however, classifies the remodel as Type V- Non-rated. Per table 503 (and frontage increases) the total allowable building area is approximately 31,500 SF as opposed to the actual building area which is 29,377 SF. The building appears to comply with allowable building heights and areas.

Exterior walls utilize primarily 8" Concrete Masonry Units (CMU) covered with marblecrete. The primary structural frame is made up of 2x8 joists between glu-lams with 5/8" plywood sheathing, hard GWB ceilings with glued-on fire treated ACT ceilings throughout. Roof construction was converted from built-up roofing with gravel ballast to White TPO during one of the remodels of the building.
Section 3 | Building Assessment - Architectural

Exits and Egress

While Sexton Hall appears to have ample quantity of primary building exits and exit widths appropriately spaced for egress, there are a few minor issues with exit signage. Per section 1011.2, exit signs need to be internally or externally illuminated (Photo 14).

Plumbing Fixture Requirements

It appears restrooms have been remodeled to incorporate accessible stalls but do not meet the number of fixture requirements (Photo 10).

3.2 Building Envelope

3.2.1 Thermal and Moisture Protection

Insulation

The exterior walls typically consist of brick backed by 8" concrete masonry units (CMU) with a layer of marblecrete on the exterior. Exterior walls do not appear to have any insulation. The 1966 drawings show the roof construction having 5/8" plywood decking with 1-1/2" of rigid insulation. The current insulation thickness is undocumented.

Wenatchee Valley College is located in Zone 2 as outlined in Washington State Energy Code. Zone 2 (Table 13-2) requires that R-9 insulation be installed entirely outside of the roof structure for an overall U value of 0.07 maximum for the roof assembly. As the exterior walls as designed do not contain enough insulation and the roof appears to contain minimal insulation, it appears Sexton Hall falls well short of the current energy code requirements.

Membrane Roofing

Wenatchee Valley College has completed multiple roof updates on Sexton Hall. The roof membranes as observed appear to be in good condition; however, ceiling tiles and wall damage show proof of leaks over the life of the structure. Paint is peeling off of coping and sealant appears to be reaching its lifespan at multiple roof locations (Photo 11).

Windows and Glazing

The windows that have been installed throughout the building are outdated. Many windows are no longer operational due to vandalism or the potential for break-ins. As windows have a significant role in the energy profile of the building, they should be engineered to optimize energy performance.

3.3 Building Accessibility

As of July 1, 2010, the amended WAC 51-50 has adopted ICC A117.1-2003 Accessibility and Usable Buildings and Facilities as the governing accessibility regulations in Washington State, including Appendix E of the IBC.

A building is deemed "accessible" when it complies with the provisions set forth in both the 2009 International Building Code and the American National Standards Institute (ANSI) ICC 117.1. These provisions provide a continuous unobstructed path from a site arrival point through the building to enable a disabled person to approach and utilize the facility. The numerous deficiencies seen throughout the building indicates that an accessible route does not exist for many components within Sexton Hall.

Over the life of the building, Wenatchee Valley College has made improvements relative to building
accessibility from the original design. However, a number of deficiencies are still present and should be addressed.

- **Door Hardware and Access (ANSI 404.2.6)**
 Handles, pulls, locks, and other operable parts on accessible doors shall have a shape that is easy to grasp with one hand and does not require tight grasping, pinching, or twisting of the wrist to operate.

 Most of the hardware throughout the building is outdated and does not meet accessibility standards for ease of use. This deficiency can make it difficult for some individuals to operate doors if they have limited strength or movement of their hands.

 Many doors are located in a manner that does not provide adequate front approach on either the push or pull side of the door as required by Table 404.2.3.2 (Photos 1 and 2).

- **Accessible Drinking Fountains (ANSI 602.1, IBC 1109.5)**
 At least 50% but not less than one drinking fountain shall be accessible. They shall comply with the clear floor spaces of 36" for a forward approach and shall have required operable parts for the amount of building occupants.

 Multiple drinking fountains have been provided; however, they have all been mounted at the same height and are too tall to qualify as “accessible” (Photo 12).

- **Exposed Pipes and Surfaces (ANSI 606.6)**
 Water supply and drains under lavatories and sinks shall be insulated or otherwise configured to protect against contact.

 Pipes are currently not protected (Photo 13) and pose a burn hazard to occupants.

3.4 Flexibility

One of the greatest difficulties the users have in this building is the lack of functional study and meeting spaces. This building has no meeting spaces and only one small student study area (Photo 3). Additionally, faculty members have no work rooms or break rooms. Small custodial closets have been converted so a shared printer would be available (Photos 4 and 5).

Most of the interior walls are structural CMU so they are difficult to modify or remove. Wiring for lighting and power, fire alarms are surface-mounted to the CMU and are visually distracting (Photo 6).

Many of these classrooms have already been retrofitted and still are not adequate teaching spaces (Photo 7). Safety and security in the building is also a concern. A few of the classrooms have glued on ACT ceiling tiles that are falling down (Photos 8 and 9).

3.5 Recommendation

Higher education is powered by an engine of change that makes designing of spaces a moving target. Higher education buildings require flexibility in the design and technology within each space as the traditional teaching model is evolving. The CMU exterior and interior bearing walls of Sexton Hall were not designed with flexibility in mind. In order to address the multitude of accessibility, technology, and energy efficiency upgrades needed to make the building current, a complete renovation would need to be undertaken. However, it is unlikely that Sexton Hall can completely meet the functional and programmatic requirements of Wenatchee Valley College even with a renovation.
Photo 1 – Door does not have adequate accessibility clearance

Photo 2 – Door does not have adequate accessibility clearances on push-pull side
Photo 3 – Only group study area present in Sexton Hall

Photo 4 – Closet which functions as Workroom/Kitchenette for faculty
Section 3 Building Assessment - Architectural

Photo 5 – Closet which has been repurposed for office

Photo 6 – Evidence of water damage on ceiling tiles and surface mounted electrical as the result of inflexible building systems
Photo 7 – Technological modifications result in low hanging equipment

Photo 8 – Water damaged/missing ceiling tiles
Section 3 Building Assessment - Architectural

Photo 9 – Ceiling tiles adhesive is failing

Photo 10 – Current restroom configuration
Photo 11 – Paint is peeling at roof panels; caulking is reaching the end of its life span

Photo 12 – Lack of dual-height drinking fountains; exposed pipes

Photo 13 – Exposed pipes can pose a burning hazard
Photo 14 - Non-illuminated exit signage, signage too low
SECTION 4
BUILDING ASSESSMENT - STRUCTURAL
4.0 BUILDING ASSESSMENT – STRUCTURAL

Sexton Hall is a single-story building built in 1966 as the Vocational Building. The facility is rectangular in shape, roughly 240’x130’. Although some remodeling has taken place to change the programming, the building continues to follow its original configuration.

The building construction is made up of sawn lumber roof joists spanning between glu-lam beams, which are supported by concrete block walls. Foundations are constructed of standard concrete spread footings. The lateral system for the building consists of concrete block shear walls.

In October of 2012, Integrus Structural was asked to participate with a team of professionals to assess the structural feasibility of remodeling the facility to function under a new academic program. Based on the current building layout and inflexible structural systems, it is assumed a significant remodel effort would be required. As a result, the focus was on assessing what must be accomplished to meet current code requirements for seismic design. Site observations followed the ASCE 11 Guideline for Structural Condition Assessment of Existing Buildings and ASCE 31 Seismic Evaluation of Existing Buildings for a walk-through condition evaluation and recommendation. Observations were limited to visible elements only. No material testing was performed as a part of this report.

4.1 Observations

In general, the existing building structure was observed to be in a fair state. No signs of significant differential settlement or structural distress were observed. Roof joists, glu-lam beams, and block walls appeared to be in good repair. With the exception of minor cracking near a few window and door jambs, concrete block units and joints appeared to be sound. Foundations appeared to be generally level and uncracked. Some areas of water damage to ceiling tiles was noted.

The following deficiencies were noted during our walk-through and review of available documentation:

- There does not appear to be regularly spaced horizontal reinforcement in bond beams in the block walls.
- Diaphragm forces are transferred to the shear walls through toe-nailing of collectors and chords to nailers.

4.2 Conclusions

Our understanding of seismic events and their effect on building structures has increased significantly since the 1960s, which was when this building was designed. In that era, structural designs focused on increasing the size and strength of structural elements in order to resist lateral forces. That practice produced many facilities like Sexton Hall, which were very rigid and stiff. The observed structural performance of these types of buildings during earthquake events has led to a change in design philosophy. We now understand that safe performance of building structures is realized by designs that possess both strength and ductility, which allow buildings to flex during an earthquake without breaking.

A significant remodel of this facility would require that the lateral force resisting system for the building meet current code standards. Although the lateral system used in Sexton Hall provides a complete load path for forces to pass from the roof diaphragm to the foundation, there are deficiencies that would need to be addressed. The block walls may not be adequately reinforced to resist shear forces, and the load path relies on a mechanism which is not permitted in current building codes.

- The concrete block walls do not contain horizontal reinforcement spaced at 4'-0" or less. Horizontal reinforcement carries lateral shear forces in the shear walls and introduces ductility into the stiff block wall system. Additional analysis should be performed to confirm the adequacy of the masonry shear walls with less than code required horizontal reinforcement.
Lateral forces are transferred to the shear walls by way of toe-nails between collectors and nailers embedded in bond beams. Current design codes do not allow for the use of toe-nails to transfer lateral forces in excess of 150 plf in areas of moderate seismicity. The Tier 1 Quick Check found the demand on the toe-nails to be as high as 620 plf. The mechanism for transferring lateral forces between the roof diaphragm and shear walls would need to be upgraded to bring the existing lateral force resisting system into compliance with today’s standards.

Gravity and lateral support for Sexton Hall is provided entirely by concrete block bearing walls, with relatively few non-structural partition walls. In the event that any significant remodel take place requiring the relocation or removal of walls, it would be necessary to introduce supplementary gravity and lateral force resisting systems.

Considering the scope of the deficiencies noted above, the process of developing and implementing the necessary upgrades to bring the lateral systems for the building into agreement with current design practices would likely require a significant amount of cost and effort.
SECTION 5
BUILDING ASSESSMENT - MECHANICAL
5.0 BUILDING ASSESSMENT – MECHANICAL

There are various types of mechanical systems in Sexton Hall: large central air handling units, various variable and constant volume terminal units, refrigerated split systems, booster chiller, and cooling tower. Much of this equipment has exceeded the normal life expectancy and would not be recommended for continued service if major renovations are planned.

However, there are exceptions: The four Pace central air handling units seem to be operating very smoothly and could possibly serve for a few more years if needed in a future redesign. Other units such as the DX split systems and terminal boxes should be replaced in a remodel program.

The existing chiller is quite old, but has few hours and has been rebuilt. It only comes on in extreme cooling load conditions. Still, it may not be wise to depend on this chiller and its dedicated cooling tower for extended service and replacement should be examined carefully (additional description follows under cooling systems).

5.1 Mechanical Site Utilities

Hot water for heating and chilled water for cooling are provided to Sexton Hall from the central boilers and chiller at Batjer Hall. The utility pipes are routed through underground tunnels connecting the two buildings.

The two cast iron sectional hot water boilers located in Batjer Hall are equipped with gas-fired atmospheric burners. The capacities of the burners are labeled at 3 million BTU/hour for each burner. The boilers were installed in 1996.

The chilled water is provided from a single 400-ton water-cooled chiller that was installed in 1999. The chiller is located on the lower level Mechanical Room and its condenser barrel is connected to a water tower on the roof of Batjer Hall.

5.2 Mechanical Equipment

Sexton Hall is mainly served by four central air handling units built by Pace. These units were installed between 1997 and 1998 and replaced a number of unit ventilators and fan coils that were located on the perimeter of the outside walls.

Spreading out from each of the AHUs is a distributed ductwork that supplies tempered, filtered air to various zone terminal units. In some areas, the original ceilings were lowered to allow the installation of the overhead ductwork. The terminal units are capable of a variable volume airflow delivery to the zone and are equipped with hot water reheat coils to provide heating of the air stream if required by the local thermostat.

A variable air volume system requires that the central air handling units are capable of modulating supply air as the various zone terminal units adjust their dampers to satisfy their local thermostats. However, due to fan control failure in the Pace units, which are obsolete, the air handling units have been operating on a constant-volume basis. The current plans are to install variable frequency drives for the four Pace units and connect them to the building control system, possibly before the end of the year. The air handlers appear to be in good condition, but are approaching 25 years of service life. The retaining of the AHU(s) will need to be evaluated carefully in the scope of any future remodel or renovation.

The areas with Computer Labs and Server Rooms are served by dedicated DX units for independent cooling year-round.

5.3 Heating System

Hot water for heating is supplied from the boilers in Batjer Hall via piping in tunnels. The hot heating water is piped to the various air handling units and ceiling-mounted variable volume terminal units that are equipped
Section 5 | Building Assessment – Mechanical

with reheat coils. The hydronic system appears to be in good shape as there were hardly any water spots visible in the ceiling tiles.

5.4 Cooling Systems

Chilled water is supplied to Sexton Hall from Batjer Hall via underground pipelines that enter the Mechanical Rooms. The chilled water circulated internally throughout the building to the four air handling units. The piping, insulation, and controls look satisfactory.

Sexton Hall also has a 1979 vintage water cooled reciprocal compressor in the Mechanical Room that is used as a booster for additional cooling capacity to the chilled water delivered from Batjer Hall. This York 40-ton unit only operates seldom and is in good shape for its age. The rooftop-mounted cooling tower connected to the compressor is also in good shape for its age. The 40-ton reciprocating type of chiller is not very efficient by current standards. If a booster chiller would still be required in any type of remodel, it would be recommended to utilize a small package scroll type of air cooled packaged chiller that will eliminate the old cooling tower and associated pumps and piping, controls, and chemical treatment.

5.5 Ventilation Systems

The central air handling units are well-built units that were installed between 1997 and 1998. At that time, Pace Company had a unique fan control system called P-Cone. This control method has failed on the AHUs in Sexton Hall and is not readily available as the Pace Company no longer exists. However, there are replacement controls on the market and the college plans to install these soon with the aid of their control contractor to allow the capability of variable volume control to the air handling units.

Regaining control of the central air handling units is vital due to occupant complaints of poor air circulation, inconsistency of air temperatures, and noise. The air handling units contain a supply fan, heating and cooling coils, air filters, and mixing dampers that adjust the amount of outside and return air. The controls allow an "economizer cycle", which draws in outside air if suitable for cooling instead of relying on chilled water from the central chiller.

The ceiling-mounted terminal units are equipped with hot water coils that are connected to the hot water heating system. These coils are activated when the zone thermostat calls for heating.

The faculty staff related concerns that the densely populated computer labs had inadequate airflow and were too warm.

The interior Data Server Room is on separate dedicated standalone rooftop air conditioning unit because there is often a need for cooling when the central chilled water from Batjer Hall is not available due to seasonal shutdown. The rooftop unit added economizer controls last year to avoid using mechanical air conditioning when outdoor conditions allowed.

Complaints were aired on lack of exhaust in toilet rooms and occasional odors. New exhaust fans and/or ductwork should be included in any new renovation work.

5.6 Grilles, Registers, and Diffusers (GRDs)

It was noted that many of the bar grilles that are used for air supply showed dirty line streaks on the ceiling. This does not mean that the supply air is dirty, but rather the entrained secondary airflow picks up ambient dirt in the space and is deposited on the ceiling. This usually happens because the velocity from the bar grilles is too high and it is possible that the AHUs are not being controlled in their airflow delivery. The grilles, registers, and diffusers are all in rather poor shape. Any renovation should include new replacement GRDs with the proper type for the space requirement.
5.7 Controls

The controls used throughout are pneumatic and DDC-type from Landis and Gyr/Powers. There is a central computer used for monitoring and adjustment from the Maintenance Building. Some of the older pneumatic controls have a “hybrid interface”, which allows DDC control and monitoring, but the actuation of the valve or damper device is still through pneumatic power.

As mentioned above in the Ventilation Systems section, the Pace air handling fans are operated at a constant volume instead of tracking the terminal units’ demand to provide the correct supply air. New ABB variable frequency drives are due to be installed in a couple of months to modulate the fan output. This will reduce noise, reduce space temperature swings, and reduce fan energy. Facilities has contracted with the Lynnwood Branch of Landis and Gyr for programmed maintenance for the campus controls.

5.8 Plumbing

Complaints were made about inadequate domestic water flow in the restrooms. The existing fixtures appear in reasonable condition.

5.9 Code Deficiencies

- No use of variable speed drives for air handling units or hydronic pumps.
- Lack of adequate ventilation air is suspected in some rooms.
- Cluttered Mechanical Rooms that do not allow easy access to equipment.
6.0 BUILDING ASSESSMENT – ELECTRICAL

Although some of the existing electrical equipment in the building is still within its useful life, much of this equipment has little or no spare capacity and would likely be unable to support an expansion or renovation. In addition, these systems have numerous issues pertaining to working clearance, separation of systems, and other latent code issues as described in detail below. Any significant remodel or expansion of the building would require extensive upgrades and replacement or remediation of existing systems to provide the necessary capacity and bring the systems up to current codes.

6.1 Electrical Site Utilities

Chelan PUD provides electrical power for the Wenatchee Valley College (WVC) Campus. Buildings on campus derive their electricity from Chelan PUD pad-mounted service transformers. Separate services with transformers and metering are generally provided for each building or small groups of buildings. The service transformers are typically fed from Chelan PUD via a radial feeder from the overhead primary feeders along Fifth Street and Ninth Street.

The electrical service for Sexton Hall is a 600 amp, 480Y/277 volt, 3-phase, 4-wire system. This service is fed from a pad-mounted service transformer located to the south west of the building.

6.2 Power

Electrical Rooms

The Electrical Rooms at Sexton Hall are largely shared spaces, with a mixture of mechanical and electrical equipment in addition to storage within the space. The main Electrical Room in the basement has a small chiller in the middle of the room. Chilled water piping associated with the chiller traverse the space. There are also chemicals being stored in this space. It is not recommended to co-locate these systems within the same space due to clearance, maintenance, restriction of access to qualified personnel, possible failure of electrical equipment due to water damage, and code issues. Storage of foreign materials in electrical space is not permitted.

Fault Current/Arc Flash

It has become the industry standard to study an electrical system’s available fault current and arc flash energy then to select equipment and post warning signage based on those studies to provide a more safe working environment for electrical personnel. The installed equipment does not appear to have had been studied and no related data, equipment ratings or warning signage was observed. It is recommended that a power system study be performed to evaluate the ratings of the existing equipment.

Panels

Several panels were observed to have circuits labeled in permanent marker adjacent to the actual breaker on the panel dead-front cover in addition to having a panel schedule. The labeling on the panels was not consistent with the information in the panel schedules. Spare and spaces were not labeled when present. Consistent and clear labeling of electrical equipment is required by code to facilitate routine maintenance and ensure safety.

Most panels observed had little or no breaker space for future expansion. This will heavily impact future projects and facility growth as new electrical equipment will have to be installed to support growth. With the exception of the computer lab panels, most panels did not have surge protection devices. The equipment observed did not appear to have seismic ratings.
Section 6 Building Assessment – Electrical

The main switchboard serving Sexton Hall is a 600 amp, 480Y/277 volt, 3-phase, 4-wire switchboard manufactured by Square D. This switchboard was recently replaced due to water damage from the adjacent chiller and associated piping. While this panel is modern due to the recent replacement, it has only one space, which is insufficient to provide for future growth and expansion of the facility.

Devices

Several outlets in Kitchen/Break Room areas did not appear to have the required GFCI protection. Several exterior outlets did not appear to have the required GFCI protection and or in-use covers.

General

Many of the technology lecterns were powered with extension cords, which are being used as fixed permanent wiring.

The use of multi-wire branch circuits (shared neutrals) is ubiquitous in buildings as new as five years old due to the economic advantages of distributing branch circuitry in this manner. It is expected that most of the branch circuitry within Sexton Hall utilizes multi-wire branch circuits. Recent code revisions have disallowed the use of this type of wiring with the exception of a few special cases. Any revisions/additions/renovations to the existing building would be heavily impacted by the existing multi-wire branch circuits, which would have to be completely replaced or upgraded to provide dedicated neutrals.

6.3 Lighting

Fixtures

The existing light fixtures appear to be a mixture of styles installed over a period of time. Corridors had a mixture of surface-mounted wrap, recessed 2’x4’ lay-in with flat diffuser, and 2’x4’ lay-in with parabolic diffuser. In addition, the lamp color from fixture to fixture was varied. Many classrooms where also observed to have dissimilar fixture types and lamp colors are mixed within the same space. Mixing fixture types, lamp colors, and diffusers within the same space can create eye strain for occupants in addition to complicating maintenance efforts. Fixtures within a given space should be of uniform construction, diffusers, and lamp types to minimize eye strain, maximize energy efficiency, and facilitate maintenance.

Fluorescent lamps were largely observed to be 4’ T8-type lamps throughout the facility. T8 fluorescent lamps are have been widely used since the 1980s and are considered aging technology. T5 fluorescent lamps are more recent technology and consistent with the current industry minimum standards for energy efficiency and lamp technology. In addition, LED lamp technology is available and offers significant energy efficiency compared to fluorescent technology. The apparent age of the fixtures would suggest that many are equipped with magnetic ballasts. Modern fluorescent fixtures use electronic ballasts to drive the lamps. Electronic ballasts are more energy efficient than magnetic ballasts and have a lower power factor. The fixtures should be upgraded to fixtures with T5 fluorescent or LED lamps and electronic ballasts.

Emergency egress lighting was not observed in most spaces. Wall-pack type fixtures were not observed and the ceiling fixtures did not appear to have battery backups installed. Wall-pack type fixtures or battery backup in ceiling fixtures should be installed to provide required egress lighting and to provide illumination of the exit discharge.

Exit lights were observed to be installed throughout the corridor and at exit doors. There was inconsistency in the exit lights throughout the building. Many exit lights were black with green lettering while some were white with red lettering. Consistency among fixtures will reduce maintenance costs and avoid confusion. Several exit lights were tested using the integral test switch and failed to function. Battery life is significantly impacted by operating temperature, testing, and maintenance. Under optimal conditions, a Lead-acid battery might last between five and ten years. It is expected that most of the exit lights in Sexton Hall require replacement due to batteries past their useful life. An alternative to installing batteries in each exit light would
be to install a centralized inverter system to power all of the exit lights, which would simplify maintenance and testing efforts.

Controls

The building has a significant amount of glazing, which provides an abundance of natural light. No daylight harvesting via photocell control in spaces with natural light was observed. The Washington State Non-Residential Energy Code (NREC) requires daylight harvesting, photocell, and occupancy sensor control of lighting in commercial buildings to conserve energy. Other than classrooms, most spaces were not equipped with occupancy sensors to automatically shut-off lights when not in use. The existing lighting control system predominantly consists of manual toggle switches. The addition of multi-level switching and dimming controls and fixtures would provide more lighting level options for the user and conserve energy. To meet the current energy standards, extensive wiring and equipment upgrades would be required, including: new fixtures/ballasts, dimming components and controls, switches, lighting control panels, control wiring, sensors, and relays.

6.4 Fire Alarm

The existing fire alarm system consists of horn strobes, pull stations and heat detectors, and a few smoke detectors. The heat detectors are intended to protect the building. They are not designed to protect occupants. The addition of smoke detectors to the system would provide early warning to occupants and allow maximum time to safely exit the building. The notification coverage was observed to be lacking in several areas. Additional horn strobes should be added to provide adequate notification coverage.

6.5 Telecom

The existing telecommunications equipment is located adjacent to mechanical equipment. The presence of electrical and mechanical equipment in proximity to telecommunications equipment can cause electromagnetic interference (EMI) and radio frequency interference (RFI). The applicable code requires a 3-meter separation between telecom equipment and any potential sources of EMI and RFI. The locations were observed to be dusty and have the potential for static electricity. The telecom locations did not appear to have adequate grounding bus systems. The racks and telecom equipment did not appear to have seismic ratings.

All telecom equipment should be located to minimize EMI and RFI, dust, and static electricity and to ensure that only qualified personnel have access to sensitive telecom equipment. The room should be specifically designed to mitigate dust, static electricity, humidity, physical damage, EMI, RFI, and provide access only to authorized personnel.

6.6 Code Deficiencies

- Shared mechanical, electrical, and telecom spaces.
- Occupancy sensor control for lighting.
- Daylight harvesting control for lighting.
- User controlled multiple lighting levels.
- Exterior photocell control for lighting.
- Fire alarm notification coverage.
- GFCI protection for outlets in Kitchen/Break Room and exterior areas.
- Egress lighting.
- Exit lighting.
- Seismic ratings/bracing on equipment.
- Fault current ratings.
- Arc flash signage/protocol.
- Extension cords used as permanent fixed wiring.
APPENDIX G

FACILITY CONDITION SURVEY
FOR WENATCHEE VALLEY COLLEGE
TABLE OF CONTENTS

ACKNOWLEDGMENTS ... i
SECTION 1 .. 1
 INTRODUCTION ... 2
 EXECUTIVE SUMMARY .. 7
 FACILITY REPLACEMENT AND RENOVATION .. 20
 FACILITY MAINTENANCE MANAGEMENT ... 23
 SURVEY METHODOLOGY .. 30
SECTION 2 ... 36
 FACILITY DEFICIENCY SUMMARY .. 37
 FACILITY DEFICIENCY DETAIL ... 43
 SITE/BUILDING CONDITION ... 51
APPENDICES .. 114
 APPENDIX A ... 115
 DEFICIENCY SCORING METHOD .. 115
 APPENDIX B ... 121
 BUILDING/SITE CONDITION RATINGS ... 121
 APPENDIX C ... 125
 CAPITAL REPAIR REQUEST VALIDATION CRITERIA .. 125
ACKNOWLEDGMENTS

The following individuals are acknowledged for their participation in and contribution to the Wenatchee Valley College Facility Condition Survey.

State of Washington

State Board for Community and Technical Colleges

1300 Quince St. SE, Olympia, WA 98504 (360) 704-4382

Wayne Doty, Capital Budget Director

Steve Lewandowski, Chief Architect

Wenatchee Valley College

1300 Fifth Street, Wenatchee, WA 98801 (509) 664-2591

Suzie Benson, Vice-President for Administrative Services

Greg Randall, Director, Facilities & Operations
SECTION 1

NARRATIVE SUMMARY

IN THIS SECTION:

- Introduction

- Executive Summary
 - College Overview
 - Deficiency Survey Update Summary
 - Capital Repair Requirement Deficiency Overview
 - Additional Deficiency Concerns
 - Major Infrastructure Overview
 - Consistency of Repair Requests with Facility Master Plan
 - Building Condition Rating Overview
 - Maintenance Management Concerns
 - Facility Condition Survey Report Format

- Facility Replacement and Renovation
 - Facility Replacement Priority Overview
 - Facility Renovation Priority Overview

- Facility Maintenance Management
 - Maintenance Staffing and Expenditure Overview
 - Maintenance Staffing
 - Maintenance Expenditures
 - Work Management Overview
 - Preventive Maintenance Overview
 - Maintenance Philosophy

- Survey Methodology
 - Survey Process
 - Repair/Maintenance Standards
 - Deficiency Documentation
 - Survey Data Management and Reporting
INTRODUCTION

This facility condition survey is the thirteenth biannual survey conducted by the State Board for Community and Technical Colleges (SBCTC). In 1989 the SBCTC directed that a facility condition survey be performed on all state-owned community college facilities. The intent of the survey was to provide a determination of the physical condition of state-owned community college facilities, and to identify capital repair project candidates for funding consideration for the bi-annual state budget cycle. Starting in 1991, the five technical colleges and Seattle Vocational Institute were also included in this process.

The current survey continues the process begun in 1989 as a method of identifying and budgeting capital repair needs by applying a uniform process to all colleges system-wide. The capital repair candidate validation process uses a condition evaluation protocol and deficiency prioritization methodology applied in a consistent manner across all of the two-year institutions. The process was initiated with a detailed baseline condition survey conducted at each college in 1989, followed by updates conducted every two years. In 1995 a detailed baseline survey was conducted once again. Updates have been conducted every two years since 1995.

In 2001 the survey was augmented by a facility condition rating process whereby the overall condition of each college facility is rated by evaluating the condition of 20 separate technical adequacy characteristics. A score is calculated for each facility based on this evaluation. The condition rating process continues to be an integral part of the condition survey update process.

The focus of the 2013 survey update includes:

- Reviewing deficiencies documented in the 2011 survey that have either not been funded or only partially funded for the current biennium, and evaluating the current condition of those deficiencies;
- Updating the relative severity/priority of those deficiencies to result in a deficiency score to be used as a guide for repair request prioritizing and timing;
• Modifying the recommended corrective action for unfunded deficiencies if necessary, and updating the estimate of repair costs for capital repair project requests;

• Reviewing, validating, prioritizing, and estimating corrective costs for “emerging” deficiencies identified by the college as potentially requiring capital repairs;

• Updating the building and site condition ratings.

This survey is intended to assist the SBCTC in establishing the relative severity of each capital repair deficiency to allow system-wide prioritizing of each college repair request. The SBCTC will also be able to estimate in advance the probable level of magnitude of the cost of the projects likely to be requested by each college for inclusion into its 2015-2017 capital repair requests.

The focus of the condition survey update, as determined by the SBCTC, includes major building systems, utility distribution systems, and some site elements. It does not include dormitories, parking lots, asbestos hazard identification, ADA compliance, new construction, construction currently under warranty, or facilities less than eight years old or purchased less than eight years ago.
EXECUTIVE SUMMARY

The campus visit and validation assessment for this facility condition survey update for Wenatchee Valley College campus was conducted in June, 2013.

The survey had a dual focus. First, deficiencies identified during the 2011 survey that are not being funded for repairs, or only partially funded, were reviewed to determine any changes in the scope of these deficiencies since the 2011 survey. Changes were documented and cost estimates for correcting the deficiencies updated. Each deficiency was also re-prioritized using the prioritizing system that was developed by the consultant and the SBCTC in 1995, and modified in 1999 and 2001. Second, review, analysis and documentation of validated “emerging” deficiencies identified by the college were conducted. “Emerging” deficiencies that qualified as capital repairs were also prioritized, and cost estimates for correcting those deficiencies were developed. The prioritization process included a determination as to whether a deficiency should be funded for the 2015-2017 biennium or backlogged for funding after 2017.

Campus areas and facilities not owned or managed by the State, dormitories, parking lots, potential asbestos problems covered by the SBCTC hazardous material/asbestos abatement pool, deficiencies covered under existing warranties, and new construction project deficiencies were not addressed as part of this effort.

COLLEGE OVERVIEW

Wenatchee Valley College serves a district with a service area of some 10,000 square miles that covers Chelan, Douglas and Okanogan counties. It is one of the largest rural districts in the State. The main campus, located in the city of Wenatchee, has been in operation since 1939. The college also operates a satellite campus in the city of Omak, located approximately 100 miles north of Wenatchee. This campus has been in operation since 1972.

The main campus is located on a 60-acre site that houses thirteen permanent facilities, including one single-family residential structure. The permanent facilities range in size from 1,658 GSF to 82,000 GSF. Eight of the permanent non-residential facilities are considered instructional/academic facilities, one is an administrative and student support facility, two are multi-use facilities, and one is a maintenance and storage facility. The main campus also includes a relatively new student dormitory complex.
The Omak campus is located on a 1.5-acre site that houses four facilities ranging in size from 5,587 GSF to 8,848 GSF. Three of these facilities are academic/instructional facilities, and one is a multi-use facility. The college has also purchased several facilities located in the residential area adjacent to the Omak campus. Four were originally constructed as residences.

DEFICIENCY SURVEY UPDATE SUMMARY

PREVIOUS SURVEY

Eight deficiencies were identified in the previous facility condition survey for the Wenatchee Valley College. Typically, the survey data for all college deficiencies are included in a single list and prioritized by severity. The prioritized list is then pared down to the most severe deficiencies based on the total dollar amount identified in the State Board’s capital budget request for Minor Works Preservation projects.

The portion of the funding request related to an individual campus is determined by adding up all of the projects that are included in the pared down list for each campus. After the list is correctly sized, colleges are given the opportunity to make modifications to their preliminary list of projects, but are constrained by the pre-determined budget amount for their college. The State Board then uses the modified project data to help develop the final capital budget Minor Works Preservation request.

To address the worst deficiencies identified in the previous survey, the State Board submitted six of these deficiencies as Minor Works Preservation projects in the 2013-15 capital budget request (some of these have been combined into sub-projects in the budget request):

- Patch Dryvit-type cement wall panels. MACC estimate of $47,000.
- Replace air cooled chiller. MACC estimate of $105,000.
- Replace damaged wallboard. MACC estimate of $50,000.
- Replace P-Cones with Variable Frequency Drives. MACC estimate of $150,000.
- Replace roof, insulation and flashing on the Wells and Industrial Technology buildings. MACC estimate of $239,000.
SURVEY UPDATE

This condition survey update validated additional repair deficiencies and recommendations for funding. Four of the deficiencies have been recommended for funding in the 2015–2017 capital budget.

The following table summarizes by funding category the number of deficiencies, average severity score, and estimated repair cost. Projects not recommended for funding are not included.

FACILITY CONDITION SURVEY - COLLEGE DEFICIENCY SUMMARY BY FUNDING CATEGORY

<table>
<thead>
<tr>
<th>WENATCHEE VALLEY COLLEGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE NAME/ FUNDING CATEGORY</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Wenatchee Campus Facility</td>
</tr>
</tbody>
</table>

SITE TOTAL

<table>
<thead>
<tr>
<th># OF DEF.</th>
<th>AVG. SVR. SCORE</th>
<th>REPAIR COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>74</td>
<td>$270,000</td>
</tr>
</tbody>
</table>

COLLEGE TOTAL

<table>
<thead>
<tr>
<th># OF DEF.</th>
<th>AVG. SVR. SCORE</th>
<th>REPAIR COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>74</td>
<td>$270,000</td>
</tr>
</tbody>
</table>

CAPITAL REPAIR REQUIREMENT DEFICIENCY OVERVIEW

The deficiencies identified during this survey are summarized below:

FACILITY CONDITION SURVEY SUMMARY

<table>
<thead>
<tr>
<th>WENATCHEE VALLEY COLLEGE</th>
</tr>
</thead>
</table>

DEFICIENCY DETAIL

<table>
<thead>
<tr>
<th>SURVEY DATE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/13</td>
</tr>
</tbody>
</table>

FACILITY: 150BLM Library/Media

DEFICIENCY: F05 Facility

- **Window sill and stucco**
- **Score:** 80
- **Critical:** 1 LS
- **Repair Cost:** $30,000

- There is water infiltration occurring at various window sills. The water has caused some deterioration of the stucco soffit and...
lower walls. The storefront windows should be re-sealed/flashed to keep water outside of the building envelope. The stucco soffits and walls should be repaired.

Lower level on the north and west side of the building enclosure

FACILITY: 150BTJ Batjer Hall

DEFICIENCY: F03 Facility

Roof and soffit

The canopy roof is leaking and has allowed water to flow onto the exposed structure and soffit below. The roofing should be replaced with single-ply roofing. The structure and soffit should be scraped and re-painted.

Building entrance

DEFICIENCY: F02 Facility

Air handler

The air handler is near the end of its useful life. The coils leak and the damper actuator does not consistently function. Since the cost of repair is more than 50% of the unit replacement cost, this unit should be replaced.

Mechanical room

DEFICIENCY: F04 Facility

Steam stack

The facility staff were concerned about the structural integrity of the steam stack due to its age. The stack is now used for the boiler exhaust rather than as originally intended. The stack should be reviewed by a structural engineer to determine if the stack should be strengthened or partially removed.

Through core of building up through roof

FACILITY: 150GYM Gymnasium

DEFICIENCY: F01 Facility

Rooftop HVAC

Both of the rooftop HVAC units have failed compressors and failing damper actuators. Each unit has two compressors. One unit has two failed compressors the other unit has one failed compressor. Both units damper actuators do not function correctly. Since repair costs exceed 50% of replacement costs, the units should be replaced.

Roof
SBCTC 2013 Facility Condition Survey

Wenatchee Valley College

FACILITY CONDITION SURVEY

SUMMARY

Wenatchee Valley College

DATE: 6/13

FACILITY: 150WEL Wells

DEFICIENCY: F06 Facility

SCORE 64

Critical

HVAC

There are six univent units serving rooms 1060A through 1060E that are at the end of their useful life. The facility staff identified these units as a deficiency after the survey. There are also three units in rooms 1073 through 1075 that are beyond their useful life. Many of the units no longer function. These units are roughly 40 years old. They are located in wing 5 of the building. The other four wings of the building are planned for demolition. These units and their related piping and controls

Classrooms

The following table summarizes the average severity score and estimated repair cost. The data is sorted by facility the number of deficiencies.

FACILITY CONDITION SURVEY - COLLEGE DEFICIENCY SUMMARY BY BUILDING

Wenatchee Valley College

<table>
<thead>
<tr>
<th>SITE NAME/ FACILITY</th>
<th>FACILITY NAME</th>
<th># OF DEF.</th>
<th>AVG. SVR. SCORE</th>
<th>REPAIR COST</th>
<th>FCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wenatchee Campus</td>
<td>150BLM Library/Media</td>
<td>1</td>
<td>80</td>
<td>$30,000</td>
<td>0.3%</td>
</tr>
<tr>
<td>STATE UFI:</td>
<td>A02712</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150BTJ Batjer Hall</td>
<td>2</td>
<td>76</td>
<td>$59,000</td>
<td>0.7%</td>
<td></td>
</tr>
<tr>
<td>STATE UFI:</td>
<td>A00894</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150GYM Gymnasium</td>
<td>1</td>
<td>72</td>
<td>$39,000</td>
<td>0.9%</td>
<td></td>
</tr>
<tr>
<td>STATE UFI:</td>
<td>A05684</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150WEL Wells</td>
<td>1</td>
<td>64</td>
<td>$142,000</td>
<td>1.3%</td>
<td></td>
</tr>
<tr>
<td>STATE UFI:</td>
<td>A04977</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SITE TOTAL</td>
<td>5</td>
<td>74</td>
<td>$270,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11
FACILITY CONDITION SURVEY - COLLEGE DEFICIENCY SUMMARY BY CAUSE

Wenatchee Valley College

<table>
<thead>
<tr>
<th>SITE NAME/ CAUSE</th>
<th>AVG. SVR.</th>
<th># OF DEF.</th>
<th>REPAIR COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age/Wear</td>
<td>72</td>
<td>4</td>
<td>$240,000</td>
</tr>
<tr>
<td>Unknown</td>
<td>80</td>
<td>1</td>
<td>$30,000</td>
</tr>
<tr>
<td>SITE TOTAL</td>
<td>74</td>
<td>5</td>
<td>$270,000</td>
</tr>
<tr>
<td>COLLEGE TOTAL</td>
<td>74</td>
<td>5</td>
<td>$270,000</td>
</tr>
</tbody>
</table>

Since capital repair funding is derived largely from long-term State bond indebtedness, the investment of capital repair dollars in a facility should likewise result in a long-term benefit, a minimum of thirteen years according to OFM guidelines. This means that facilities for which capital repair dollars are being requested should have a reasonable remaining life expectancy to recover the repair dollar investment. Therefore, capital repair requests for facilities that a college has identified as a high priority for renovation or replacement are carefully scrutinized to determine whether the requests should instead be incorporated into any renovation or replacement proposal that is submitted. Typically, capital repair requirements identified in a facility that is being considered for renovation or replacement are backlogged pending receipt of renovation or replacement funding.
ADDITIONAL DEFICIENCY CONCERNS

One deficiency identified during this survey has not been recommended for capital repair funding.

The college has expressed some concern over the condition of the masonry steam stack in the Student Center. The stack is still used for the boiler exhaust. The concern was related to the structural integrity of the stack. It was recommended that the facility hire a structural consultant to evaluate the stack so that the deficiency could be properly identified.

MAJOR INFRASTRUCTURE OVERVIEW

The current campus master plan for the college, updated in 2008, does not really discuss utility distribution systems and related issues. The plan document indicates that the overall condition of the campus infrastructure needs to be evaluated, and that utility drawings for the original campus are not as complete as those from newer building construction. One-line drawings of existing systems are provided, but no existing condition or issue discussion is included.

During the 2009 condition survey an issue with the campus chilled and heating water system distribution piping was raised. Apparently, due to leaks within the system, a number of heating water coils froze after the automatic fill system had diluted glycol concentrations to a point where the system was no longer protected from freezing. The leaks were repaired and the system was recharged with glycol.

The chilled water loop in question serves four of the main campus buildings. Due to leaks, the system is only partially full during the winter, and is not refilled with water till the start of the cooling season. There may also be damage to the cooling coils as a result of this situation. Clearly there may be significant issues with the chilled water system. A consulting engineer's report prepared in January of 2009 made several recommendations. However, no cost estimates were provided.

Another issue of concern that impacts on any potential decisions about the system is the fact that only four buildings are currently served by the system. One of these buildings, Wells, is a high priority for replacement. It will need to be determined whether it would be
strategically prudent or cost-effective to replace the existing system as opposed to migrating to a stand-alone system, at least for Brown and Sexton. Apparently Sexton has a stand-alone chiller, though it has not been used in several years.

It was recommended in 2009 that the college retain a qualified engineering consultant to conduct a study with associated costs that looks at repair/replacement of the existing system versus a stand-alone heating/cooling strategy for these buildings, especially given the fact that two of the four buildings will likely not remain assets for the long-term.

The current campus master plan for the college does not discuss utility distribution systems and related issues at the Omak campus.

CONSISTENCY OF REPAIR REQUESTS WITH FACILITY MASTER PLANNING

One of the criteria used for the capital repair request validation process is to review the college’s master or facilities plan to determine what the medium and long-term planning and programming objectives of the college are with respect to the facilities for which capital repair dollars are being considered. The primary focus is to determine what the college considers the remaining life of these facilities to be, which will determine whether or not the proposed capital repair projects have economic merit.

The deficiencies identified in this condition survey update and recommended for funding are in buildings and locations that will likely be utilized for at least the next fifteen years or are in buildings that are slated for renovation or replacement, but require minor repairs to continue basic use of the space.

BUILDING CONDITION RATING OVERVIEW

The condition rating of the facilities at Wenatchee Valley College that are included in this condition survey update ranges from “Replace or Renovate” to “Superior”, and varies significantly, as shown in the following table. The rating scores presented in this summary were generated by the condition analysis conducted as part of the 2013 condition survey update.
Wenatchee Valley College

<table>
<thead>
<tr>
<th>FACILITY #</th>
<th>FACILITY NAME</th>
<th>GSF</th>
<th>SITE</th>
<th>2013 SCORE</th>
<th>2011 SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>150MAC</td>
<td>Music and Art Center</td>
<td></td>
<td>Wenatchee Campus</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>150WTI</td>
<td>Wenatchi Hall</td>
<td>82,000</td>
<td>Wenatchee Campus</td>
<td>146</td>
<td>146</td>
</tr>
<tr>
<td>150CWU</td>
<td>Central Washington University</td>
<td>7,667</td>
<td>Wenatchee Campus</td>
<td>158</td>
<td>146</td>
</tr>
<tr>
<td>150FAC</td>
<td>Facilities</td>
<td>7,339</td>
<td>Wenatchee Campus</td>
<td>178</td>
<td>178</td>
</tr>
<tr>
<td>150NFH</td>
<td>Friendship Hall</td>
<td>7,131</td>
<td>Omak Campus</td>
<td>178</td>
<td>178</td>
</tr>
<tr>
<td>150BTJ1</td>
<td>Batjer/Vocational Shop Additions 1/2</td>
<td>12,355</td>
<td>Wenatchee Campus</td>
<td>182</td>
<td>158</td>
</tr>
<tr>
<td>150NCL</td>
<td>North Classroom</td>
<td>8,848</td>
<td>Wenatchee Campus</td>
<td>226</td>
<td>210</td>
</tr>
<tr>
<td>150WEL</td>
<td>Wells-Arts Addition</td>
<td>3,605</td>
<td>Omak Campus</td>
<td>216</td>
<td>204</td>
</tr>
<tr>
<td>150EFS</td>
<td>Eller/Fox</td>
<td>16,200</td>
<td>Wenatchee Campus</td>
<td>218</td>
<td>206</td>
</tr>
<tr>
<td>150BLM</td>
<td>Library/Media</td>
<td>33,756</td>
<td>Wenatchee Campus</td>
<td>226</td>
<td>210</td>
</tr>
<tr>
<td>150VTC</td>
<td>Van Tassell</td>
<td>24,640</td>
<td>Wenatchee Campus</td>
<td>234</td>
<td>234</td>
</tr>
<tr>
<td>150NAD</td>
<td>North Administration Building</td>
<td>5,600</td>
<td>Omak Campus</td>
<td>246</td>
<td>234</td>
</tr>
<tr>
<td>150NSC6</td>
<td>Facilities Office and Shop</td>
<td>1,034</td>
<td>Omak Campus</td>
<td>268</td>
<td>256</td>
</tr>
<tr>
<td>150GYM</td>
<td>Gym-Fitness Center</td>
<td>8,976</td>
<td>Wenatchee Campus</td>
<td>274</td>
<td>258</td>
</tr>
<tr>
<td>150SXT</td>
<td>Sexton</td>
<td>26,631</td>
<td>Wenatchee Campus</td>
<td>294</td>
<td>254</td>
</tr>
<tr>
<td>150RFG</td>
<td>Refrigeration</td>
<td>4,384</td>
<td>Wenatchee Campus</td>
<td>388</td>
<td>388</td>
</tr>
<tr>
<td>150GYM</td>
<td>Gym</td>
<td>16,925</td>
<td>Wenatchee Campus</td>
<td>414</td>
<td>414</td>
</tr>
<tr>
<td>150MNT</td>
<td>Industrial Technologies</td>
<td>8,248</td>
<td>Wenatchee Campus</td>
<td>420</td>
<td>420</td>
</tr>
<tr>
<td>150BTJ</td>
<td>Batjer</td>
<td>29,045</td>
<td>Wenatchee Campus</td>
<td>430</td>
<td>430</td>
</tr>
<tr>
<td>150NSC5</td>
<td>Student Resource Center</td>
<td>5,587</td>
<td>Omak Campus</td>
<td>430</td>
<td>430</td>
</tr>
<tr>
<td>150HO1</td>
<td>Gray House</td>
<td>1,658</td>
<td>Wenatchee Campus</td>
<td>444</td>
<td>418</td>
</tr>
<tr>
<td>150NSC8</td>
<td>W.S.U. College Bound Office</td>
<td>882</td>
<td>Omak Campus</td>
<td>448</td>
<td>448</td>
</tr>
<tr>
<td>150NSC9</td>
<td>New Classroom Building</td>
<td>3,194</td>
<td>Omak Campus</td>
<td>500</td>
<td>488</td>
</tr>
<tr>
<td>150NSC7</td>
<td>Omak College Foundation Office</td>
<td>839</td>
<td>Omak Campus</td>
<td>504</td>
<td>492</td>
</tr>
<tr>
<td>150WEL</td>
<td>Wells</td>
<td>36,918</td>
<td>Wenatchee Campus</td>
<td>554</td>
<td>554</td>
</tr>
</tbody>
</table>

TOTAL GSF AND WEIGHTED AVERAGE SCORE

353,462 283

146 - 175 = Superior
176 - 275 = Adequate
276 - 350 = Needs Improvement through Additional Maintenance
351 - 475 = Needs Improvement through Renovation
>475 = Replace or Renovate
The rating scores for permanent college facilities that were rated range from a low of 146 to a high of 554, with a lower score indicating a better overall condition rating. (See the Site/Building Condition Scoring Overview and Ratings section for a breakdown of the rating scores.) In general, the better scores were received by the newer facilities and by facilities that have undergone remodels in recent years.

Furthermore, buildings in the construction phase of a major renovation at the time of the survey were rated based on the anticipated condition of the facility after the project is completed. This concept was also applied to major system renovations. Partial renovations and additions were rated based on the average condition of the existing and renovated components of the facility.

The weighted average score for all rated facilities is 283 for 2013, indicating that, overall, college facilities need improvement through additional maintenance. Thirteen of the twenty four college facilities are rated as either Superior or Adequate. In 2011 the weighted average score for all facilities was 275.

MAINTENANCE MANAGEMENT CONCERNS

The State of Washington capital and operating budgets have been significantly impacted by the recent recession. The impact of the recession has directly affected the level of funding appropriated to the community and technical colleges. As a result, facility maintenance budgets have been reduced accordingly.

The reduction in maintenance funding may likely result in an increase in deferred maintenance. Another result of the temporarily reduced funding level is the trend to approach maintenance with a “repair by replacement” strategy, which is a more expensive approach to maintaining a facility and merely replaces the operating costs with higher capital costs.

Comparatively, all of the nation's colleges are feeling the pinch of the economic downturn, and maintenance and operations (M&O) budgets especially are under pressure. According to American School & University's 38th annual Maintenance & Operations Cost Study (completed in 2009), the median college allocates 10 percent of its total budget to M&O,
down from 11 percent the year before. While lower energy costs helped colleges' bottom lines, rising payroll and benefits costs strained budgets.

Custodial and maintenance staff are being required to do more. The amount of square feet maintained per full-time custodian increased by 16 percent; the amount of square feet maintained per full-time maintenance worker increased by 13 percent from the previous study completed in 2007.

Troubleshooting equipment and taking the time to effect repairs may not be seen as a priority when funding is not available for these activities. However, the resulting long-term costs are far higher than following a prudent policy of balancing reasonable and cost-effective repairs and justifiable replacement.

Many facilities have older large equipment, especially HVAC equipment such as air handlers. This equipment, when manufactured, was very well constructed, often to industrial standards, as compared to commercial equipment manufactured today, which is very often much less robust. Much of this older equipment can be cost-effectively repaired. Fans, motor, dampers, heating/cooling coils, shafts and bearings in air handlers can all be replaced as they fail, without the added expense of replacing the case, which often requires expensive structural work because of size and location. Why throw away a chiller, when only the compressors are bad, and when they can often be rebuilt? A lot of smaller unitized equipment can similarly be repaired instead of simply replaced.

This tendency toward replacement rather than repair also too often extends to roofs. Many times the problems that occur with roof membranes can be satisfactorily resolved with repairs or partial replacement instead of wholesale replacement of the entire membrane. This will require more rigorous investigation to determine the extent of problems, often by employing thermal scanning and/or core sampling to determine the extent of leaks or membrane condition as well as condition of underlying insulation. This does cost some money, but if it can save $175,000 to $275,000 for the average replacement cost of a roof, or if repairs can extend the life of the membrane for five to ten more years, it is certainly money well spent.

With roof membranes low first cost often seems to win out over alternatives that may have a higher initial cost but a lower life-cycle cost. The use of single-ply PCV or TPO membranes seems to be a preferred design option for new buildings and for membrane replacements. These may be a low cost option, but not a good choice for many applications. On a building with a lot of rooftop equipment and penetrations single-ply membranes have a short life due to the abuse they sustain by people constantly walking and working around
equipment on the roof. Such roofs almost always fare better with a torch-down membrane with a mineral-surfaced cap sheet, which are somewhat more costly initially, but typically last much longer and have lower life-cycle maintenance costs.

If the expertise to troubleshoot and to really analyze the condition of building systems does not exist within the maintenance organization, the organization must make sure that the consultants it hires have the experience and expertise to provide effective troubleshooting and diagnosis, and that they can provide reasonable alternative solutions to a problem. Having design expertise is simply not enough. The same is true of contractors. A contractor should not be allowed to take the easy way out and simply recommend replacement when there could be cost-effective repair alternatives. The emphasis should be on contractors and consultants who can provide more than one solution to a maintenance problem, and insure that those solutions are reasonable and cost-effective.

Another increasing concern is DDC control systems. There appears to be a built-in obsolescence factor in these systems, such that manufacturers seem to be recommending replacement about every twelve years. Over the last two to three biennia the survey team has found that colleges are being told that their systems are “obsolete” and will no longer be supported, that replacement parts will no longer be manufactured and that the college needs to upgrade to the latest system, often at very high cost. Attempting to determine the truth of these claims from manufacturers and their distributors has proved very difficult. To test these claims the survey consultant, starting in 2009, asked colleges that requested DDC replacements to have the manufacturer and distributor provide written, signed confirmation that a system would no longer be supported as of a given date, that replacement parts would no longer be available as of a given date, and that there was no third party source of replacement parts. To date no such documentation has been forthcoming from either manufacturers or distributors.

It is highly likely that college maintenance organizations will have to make do with less for the foreseeable future. This being the case, they need to make sure that their available maintenance funds are allocated in the most cost-effective manner possible. In practice this will mean giving a lot more thought to what should and can reasonably be rebuilt or repaired rather than simply replaced. It will also mean starting to apply the principles of life-cycle cost analysis and alternatives analysis to repair and replacement decisions.

FACILITY CONDITION SURVEY REPORT FORMAT

This facility condition survey report is divided into two major sections that present the survey data in varying degrees of detail. Section I is titled “Narrative Summary” and
includes four subsections. Section II is titled “Summary/Detail Reports” and includes three subsections.

Section I - Narrative Summary

This “Introduction and Executive Summary” is the first subsection. It includes an overview of the survey objectives; an overview of the college; a summary update of deficiencies funded from the previous survey; an overview of capital repair requests being submitted for the 2015-2017 biennium; a discussion of major infrastructure issues; significant maintenance/repair issues identified by the college maintenance organization, which the survey team determined could not be addressed through the capital repair process; a discussion of the consistency of repair requests with facility master planning; and a building condition rating overview.

The second subsection is titled “Facility Replacement and Renovation Proposals” and discusses facilities that are viewed by the college as prime candidates for replacement and major renovation.

The third subsection is titled “Facility Maintenance Management Overview.” It presents an overview and discussion of maintenance staffing and funding; and an overview and discussion of facility maintenance management issues.

The fourth subsection is titled “Survey Methodology” and discusses the methodology of the condition survey, including the survey process; deficiency documentation; deficiency severity scoring; cost estimating; and data management and reporting.

Section II - Summary/Detail Reports

The “Summary/Detail Reports” section of the report presents both summary and detail deficiency data. The first subsection is titled “Repair Programming Summary” and provides a summary deficiency cost estimate by building and by the criticality or deferability assigned to each deficiency, and a facility repair programming summary report. The repair programming summary report provides both descriptive and cost deficiency data for each facility, categorized by the criticality or deferability assigned to each deficiency.
The second subsection is titled "Detailed Deficiency Data" and contains the detailed deficiency data for each facility wherein deficiencies were identified. Each individual deficiency report page provides detailed information on a single deficiency.

The third subsection is titled "Site/Building Condition Scoring Overview and Ratings" and contains a discussion of the facility and site rating process; an overview of facility and site condition; the site rating sheet for the main campus and any satellite campuses; and the building condition rating sheets for each facility.

The report also contains three appendices. Appendix A provides a detailed overview of the deficiency severity scoring methodology employed by the survey team. Appendix B provides an overview of the building/site condition analysis process, including the evaluation standards and forms used in the analysis. Appendix C contains the capital repair request validation criteria that were first developed for the 2001 survey process to insure a consistent approach in identifying candidates for capital repair funding.

FACILITY REPLACEMENT AND RENOVATION

Development of the main campus of Wenatchee Valley College has taken place over a sixty-one year period, starting in 1950 with the construction of the Batjer building, followed in 1952 with construction of the Wells building. During the ensuing fifty-nine years no major period of construction occurred. Six facilities were constructed between 1962 and 1988. The construction of three new facilities between 2006 and 2009 marked the most intense phase of new construction since the campus opened.

The college also purchased one facility that was constructed in 1951 as a bus garage and has been converted into classrooms and a shop for the college welding program. A single-family residence, constructed in 1930, was also purchased by the college and is currently used as office space for faculty.

The Omak campus in Omak became operational in 1972 in a converted convent school. Through donated funds, Friendship Hall was constructed on a 1.5-acre site in 1985 to house classrooms and offices. The college subsequently acquired two additional buildings, both constructed in the 1960s. These were significantly remodeled in 1997. A 3,200 GSF science lab facility addition and additional renovation of one of the two buildings was completed in 2000.
In 2006 the Omak Foundation purchased five buildings in proximity to the campus. In 2008 the college purchased these buildings from the Omak Foundation.

FACILITY REPLACEMENT PRIORITY OVERVIEW

The most current master plan for the college was updated in 2008 and addresses planning initiatives for both campuses.

The college has determined that replacing the Wells (WEL) building at the Wenatchee campus is the number one priority for a replacement project. This proposed replacement is in accordance with the 2008 master plan.

Wells (WEL)

Wells Hall, built in 1952, is the oldest building on the main campus that contains academic classrooms. It is similar to the early 1950s “California-style” prototype middle/high school design, with five wings joined to a central circulation spine. It is a single story brick and wood frame building that appears to have been constructed on a low first cost basis. Many of the major building systems are older and in various stages of deterioration. The hypalon roof membrane on one wing of the building has deteriorated to the point that replacement is necessary.

The exterior envelope of the building is constructed primarily of clay brick and large metal framed windows, over half of which are still single glazed. An examination of the brick revealed many areas where the mortar is deteriorating. This includes areas of missing as well as spalling/crumbling mortar. The metal window frames are in various stages of deterioration, including rusting sections, and many appear to be leaking. The window and brick deterioration has created a situation where the envelope is no longer energy tight. Many of the wall sections below the windows are transite panels that are relatively thin and contain asbestos material. Transite panels also appear to have been used in many of the exterior soffits, compounding the asbestos problem. The thin wall panels only add to the energy inefficiency of the building.

The construction of the building raises potential structural codes issues, including seismic impact concerns. Repairs would be extremely expensive and would do nothing to moderate the design deficiencies in the building. The interior of the building’s five wings are
designed as very narrow structures, with low ceilings and relatively narrow hallways that create circulation problems for heavy student and staff traffic. The design of these wings severely limits their adaptability for instructional use and their amenities, despite some remodels, are generally inadequate for instructional program requirements. Any major renovation of the 50+ year old wings would not be cost-effective due to basic design and construction limitations.

There is also an extensive amount of older floor tile throughout the building, much of which probably contains asbestos, either in the tiles or the mastic. The plumbing throughout the buildings is older and has exceeded its life expectancy. Some of the HVAC equipment was replaced in 1996, but other equipment is older and slowly deteriorating.

The 2008 Master Plan envisions a new building in the present location of Wells. In keeping with the college’s pursuit for cultivating educational clusters, the new building would house existing basic education programs as well as higher education classes in business administration, accounting, and education. Classes currently conducted in Wells would be temporarily relocated to portables during construction.

FACILITY RENOVATION PRIORITY OVERVIEW

At this time the college has not identified any renovation priorities for the next biennium.
FACILITY MAINTENANCE MANAGEMENT

A questionnaire was sent to each college soliciting input from the college maintenance organization on maintenance staffing, the status of the PM program, annual workload, how work is managed, and annual maintenance expenditures. The responses from Wenatchee Valley College have been analyzed and are discussed below. The data is used to generate an overview of facility maintenance management effectiveness at the college, and is also used to compare all colleges statewide.

The maintenance questionnaire provides data to evaluate and compare maintenance staffing levels and maintenance expenditures. College responses are compared with benchmarking data available from national organizations to help identify variances.

MAINTENANCE STAFFING AND EXPENDITURE OVERVIEW

The benchmarking data for maintenance staffing and expenditures used in previous condition survey updates has come primarily from the International Facility Management Association (IFMA). This organization periodically collects and publishes comparative data gathered through in-depth surveys of a wide variety of maintenance organizations. IFMA completed the last major facility operations and maintenance survey in 2008. That data was reported in a publication titled “Operations and Maintenance Benchmarks – Research Report #32,” published in mid-2009.

Similar comparative data was found to be available from an annual maintenance and operations cost study for colleges conducted through a national survey by American School & University (ASU) magazine. The most recent data from this source is their 38th annual study published in April of 2009.

MAINTENANCE STAFFING

The Wenatchee Valley College facility encompasses approximately 353,462 GSF, not including leased facilities. The campus maintenance staff has the following composition:

- 4 Maintenance Mechanic 2, full-time
2 Maintenance Mechanic 2, full-time
1 Maintenance Mechanics 2, part-time
1 Maintenance Custodian, full-time

Many colleges supplement the maintenance staff effort by hiring outside contractors to complete some of the maintenance activities. A comparative analysis of total maintenance effort at the colleges requires that the outside contractor data be included in the total maintenance effort. See the “Overall Maintenance Comparison” section below for the comparative analysis.

IFMA SURVEY COMPARISON

For comparison with the community colleges, the size range of 250,000 to 500,000 GSF was selected from the IFMA data as representative of the average size of a state campus. The average total maintenance staffing reported by IFMA in 2009 for this size of plant was 8.7 FTEs. Dividing the upper end of the selected range (500,000 GSF) by the FTE staffing provides the number of GSF maintained per FTE -- **57,471 GSF**.

In its 2009 report, IFMA also provided comparative data for average maintenance staffing by specific categories of maintenance personnel (e.g. electricians, painters, etc.), using the same ranges of physical plant size as for total staffing. This data, which is presented below, could be useful for evaluating their existing staffing in terms of specific trades/capabilities and staffing numbers.

<table>
<thead>
<tr>
<th>Position</th>
<th>FTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervisor (incl. Foremen)</td>
<td>1.75</td>
</tr>
<tr>
<td>Administrative Support (incl. Help Desk)</td>
<td>2.38</td>
</tr>
<tr>
<td>Electricians</td>
<td>1.28</td>
</tr>
<tr>
<td>Plumbers</td>
<td>1.13</td>
</tr>
<tr>
<td>Controls Techs.</td>
<td>0.94</td>
</tr>
<tr>
<td>HVAC and Central Plant</td>
<td>1.93</td>
</tr>
<tr>
<td>Painters</td>
<td>1.25</td>
</tr>
<tr>
<td>Carpenters</td>
<td>1.28</td>
</tr>
<tr>
<td>General Workers</td>
<td>3.22</td>
</tr>
<tr>
<td>Locksmiths</td>
<td>0.96</td>
</tr>
</tbody>
</table>
ASU SURVEY COMPARISON

The American School & University (ASU) magazine cost study provides data on the average number of maintenance employees and the average GSF of physical plant maintained per employee. However, unlike the IFMA data, this data is not broken down by size ranges of physical plant. The average number of maintenance employees in the 37th annual study was reported as 8 FTEs. The corresponding data was not available in the most recent, 38th annual study. The average number of GSF maintained per FTE was reported as 79,293 in the 38th annual study.

MAINTENANCE EXPENDITURES

Based on the reported number of staff, classifications and hours worked per week and cost of outside maintenance contracts, the amount expended annually for facility maintenance/repair labor over the last full fiscal year was $437,000, or approximately $47,927 per GSF of space maintained. The amounts expended annually for material costs were not reported.

Staff costs were calculated using current Department of Personnel job classification salary data and estimated benefits costs (salary x 1.36 = total cost). If the college did not have the ability to track or did not provide outside maintenance contract expenses, this cost data may be roughly 10% to 30% below actual total maintenance costs. Staff repair efforts related to capital projects (likely funded by Capital Budget bill appropriations) is included in this calculation and varies by college, but this data was difficult to isolate at the time of this survey.

OVERALL MAINTENANCE COMPARISON

The following table compares the college maintenance staff FTEs and area per FTE (GSF/FTE) to other colleges and to the IFMA and ASU averages. Since some colleges spent maintenance funds on outside contracts to supplement their staff efforts, an estimated contract FTE number was generated based on the average annual total contracted amount. If the college did not have the ability to accurately track or did not provide outside maintenance contract expenses, the “Equivalent Contract FTE” data is inaccurate (zero FTEs). This “Equivalent Contract FTE” calculation assumes that the external contracts were primarily labor only. The “Combined Total FTEs” data attempts to reflect the combined in-house and contracted maintenance effort. This analytical approach allows data comparisons between facilities that complete all work with internal staff to facilities that contract out some of their work.
<table>
<thead>
<tr>
<th>College</th>
<th>No. of College Maintenance FTEs</th>
<th>Estimated No. of Equivalent Contract FTEs **</th>
<th>Combined Total FTEs</th>
<th>GSF / Combined Total FTEs</th>
<th>Maintenance Cost / GSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>College</td>
<td>7.4</td>
<td>0</td>
<td>7.4</td>
<td>47,927</td>
<td>$1.24</td>
</tr>
<tr>
<td>Average for All Colleges</td>
<td>6.3</td>
<td>0.8</td>
<td>7.1</td>
<td>75,591</td>
<td>$0.90</td>
</tr>
<tr>
<td>IFMA</td>
<td></td>
<td></td>
<td>8.7</td>
<td>57,471</td>
<td>*</td>
</tr>
<tr>
<td>ASU</td>
<td></td>
<td></td>
<td>8</td>
<td>69,873</td>
<td>*</td>
</tr>
</tbody>
</table>

* Not comparable because the data includes material cost which is not tracked by colleges.

** Estimated by dividing the average total fiscal year cost of contracted maintenance work by the statewide average cost of college maintenance FTEs.

This data will likely include some level of inaccuracy because of inconsistent data recording methods implemented at each college. It is also difficult to compare college data to the IFMA and ASU data because of similar reasons. The college comparison should become more accurate as the statewide maintenance tracking system is implemented.

MAINTENANCE PHILOSOPHY

As part of its responses to the 2013 maintenance questionnaire, the college maintenance organization was asked to self-rate the level of maintenance at the college based on a review of a matrix developed by the APPA that was included with the questionnaire. The matrix identifies five maintenance levels and asks the organization to determine which level applies to his/her institution for each of eleven different measures of maintenance performance, and as a whole. The five maintenance levels are:

1) Showpiece Institution;
2) Comprehensive Stewardship;
3) Managed Care;
4) Reactive Management;

5) Crisis Response.

It is felt that this rating, which measures a very comprehensive set of maintenance performance indicators, reflects to a great extent the overall maintenance philosophy that exists at each college. This is viewed as a useful metric for comparing maintenance effectiveness among the community and technical colleges.

The Wenatchee Valley College maintenance organization has rated the college as a Reactive Management institution in response to this query. The elements that define this rating can be viewed on the following pages.
<table>
<thead>
<tr>
<th>Description</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer Service/Response Time</td>
<td>Showpiece Institution</td>
<td>Average response time for any type of service; immediate response</td>
<td>Services available only by most service needs, including limited non-maintenance activities is one week or less</td>
<td>Services available only by reducing maintenance, with average response times of two weeks or less</td>
<td>Service not available unless directed from administration; average response times of one month or less</td>
</tr>
<tr>
<td>Customer Satisfaction</td>
<td>Proud of facilities; high level of trust for the facilities organization</td>
<td>Satisfied with facilities related services; usually complementary of facilities staff</td>
<td>Accustomed to basic level of facilities care. Generally able to perform mission duties but lack pride in physical environment</td>
<td>Generally critical of cost, response and quality of services</td>
<td>Consistent customer ridicule and mistrust of facilities services</td>
</tr>
<tr>
<td>Preventive Maintenance</td>
<td>100% PM</td>
<td>75-100% PM</td>
<td>50-75% PM</td>
<td>25-50% PM</td>
<td>0% PM</td>
</tr>
<tr>
<td>Corrective Maintenance Ratio</td>
<td>0-25% Corrective</td>
<td>25-50% Corrective</td>
<td>50-75% Corrective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance Mix</td>
<td>Well-developed PM program with most PM done at a frequency of slightly less than defined schedules</td>
<td>Reactive maintenance primarily due to system failing to perform especially during harsh seasonal peaks. Effort still made to do PM</td>
<td>Reactive maintenance predominates to system failing to perform, especially during harsh seasonal periods. Significant time spent procuring parts and services due to high number of emergencies. PM is done</td>
<td>Worn-out systems require staff to be scheduled to react to poorly performing systems. Significant time spent procuring parts and services due to high number of emergencies. PM is done</td>
<td>No PM performed due to more pressing problems. Reactive maintenance predominates due to worn out systems that fail frequently. Good emergency response due to extreme frequency of occurrences.</td>
</tr>
<tr>
<td>Interior Aesthetics</td>
<td>Like-new finishes</td>
<td>Clean/crisp finishes</td>
<td>Average finishes</td>
<td>Dingy finishes</td>
<td>Neglected finishes</td>
</tr>
<tr>
<td>Exterior Aesthetics</td>
<td>Watertight and clean. Good exterior appearance</td>
<td>Minor leaks and blemishes Average appearance</td>
<td>Somewhat drafty and leaky. Rough looking exterior. Extra painting routinely necessary</td>
<td>Inoperable, leaky windows; unpainted surfaces, significant air and water penetration poor overall appearance</td>
<td>Inoperable, leaky windows; unpainted surfaces, significant air and water penetration poor overall appearance</td>
</tr>
<tr>
<td>Lighting Aesthetics</td>
<td>Bright, clean attractive lighting</td>
<td>Bright, clean attractive lighting</td>
<td>Small percentage of lights are routinely out, but generally well and clean</td>
<td>Numerous lights generally out, some missing diffusers; second areas are dark</td>
<td>Dark, lots of shadows, bulbs and diffusers missing, damaged and missing hardware</td>
</tr>
<tr>
<td>Service Efficiency</td>
<td>Maintenance activities highly organized and focused. Typical equipment/building components fully functional and in excellent operating condition. Service and maintenance calls responded to in timely manner. Buildings and equipment regularly upgraded to keep current with modern standards and usage.</td>
<td>Maintenance activities organized with direction. Equipment and building components mostly functional, but suffer occasional breakdowns. Service and maintenance calls not typically responded to in a timely manner. Normal usage and deterioration is unabated, making repairs and upgrading inadequate to meet needs.</td>
<td>Maintenance activities somewhat organized, but remain people dependent. Equipment and building components are frequently broken and inoperative. Service and maintenance calls are typically not responded to in a timely manner. Normal usage and deterioration is unabated, making repairs and upgrading inadequate to meet needs.</td>
<td>Maintenance activities are chaotic and without direction. Equipment and building components are routinely broken and inoperative. Service and maintenance calls are never responded to in a timely manner. Normal usage and deterioration is unabated, making repairs and upgrading inadequate to meet needs.</td>
<td>Maintenance activities are chaotic and without direction. Equipment and building components are routinely broken and inoperative. Service and maintenance calls are never responded to in a timely manner. Normal usage and deterioration is unabated, making repairs and upgrading inadequate to meet needs.</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Facility Maintenance Operating Budget as a % of Current Replacement Value</td>
<td>>4%</td>
<td>3.5-4.0%</td>
<td>3.0-3.5%</td>
<td>2.5-3.0%</td>
<td><2.5%</td>
</tr>
</tbody>
</table>
SURVEY METHODOLOGY

The 2013 facility condition survey update has two objectives. They are, first, updating the scope and estimated cost of corrective action, and the relative priority of capital repair deficiencies identified during the 2011 survey that are still unfunded or only partially funded. The second objective is incorporating emergent deficiencies identified by the college that qualified as capital repair needs into this update. Deficiencies were prioritized using a scoring algorithm to derive a deficiency score for each deficiency. This score is intended to assist the SBCTC in its allocation deliberations for capital repair funding.

SURVEY PROCESS

The facility condition survey itself was conducted as a five-part process. First, a listing of facilities for each campus was obtained in order to verify the currency and accuracy of facility identification numbers and names, including the new assigned State ID numbers, and facility GSF.

Second, a proposed field visit schedule was developed and transmitted to the facility maintenance directors at each college. Once any feedback as to schedule suitability was received, the schedule was finalized.

Third, the field visit to each colleges consisted on an in-brief, an evaluation and validation of the capital repair deficiencies proposed by the college, a building condition rating update, and a debrief. The in-brief consisted of a meeting with college maintenance personnel to review the funded and unfunded 2011 deficiencies, discuss the emergent capital repair deficiency candidates to be validated and evaluated, and arrange for escorts and space access. The survey was conducted by the SBCTC chief architect. During the survey process the chief architect interacted with college maintenance personnel to clarify questions, obtain input as to equipment operating and maintenance histories, and discuss suspected non-observable problems with hidden systems and/or components.

In addition to the condition survey update, a building condition rating update was also conducted. The objective of this update is to provide an overall comparative assessment of each building at a college, as well as a comparison of facility condition among colleges. Each facility is rated on the overall condition of some 20 separate building system and technical characteristics. A total rating score is generated for each facility to serve as a baseline of overall condition that is used to measure improvements as well as deterioration in facility condition over time.
A site condition analysis was also conducted of each separate site at a college. The site analysis rates some eight separate site characteristics to provide an overall adequacy and needs evaluation of each college site. **The rating and scoring processes for both analyses are discussed in Appendix B.**

Upon conclusion of the field evaluations, an exit debriefing was held with college maintenance personnel to discuss the deficiencies that would be included in the condition survey update by the chief architect and to answer any final questions.

The fourth part of the process consisted of developing or updating MACC costs for each deficiency and preparing the deficiency data for entry into the database management system.

The last step in the process involved the preparation of the final deficiency reports represented by this document.

The condition survey methodology used is comprised of four basic elements:

1) A set of repair and maintenance standards intended to provide a baseline against which to conduct the condition assessment process;

2) A deficiency scoring methodology designed to allow consistent scoring of capital repair deficiencies for prioritization decisions for funding allocation;

3) A “conservative” cost estimating process;

4) A database management system designed to generate a set of standardized detail and summary reports from the deficiency data.

REPAIR/MAINTENANCE STANDARDS

Repair and maintenance standards originally developed for the 1995 baseline survey continue to be used by the survey teams as a reference baseline for conducting the condition survey. The standards were designed as a tool to assist facility condition assessment
personnel by identifying minimum acceptable standards for building system condition. The standards provide a series of benchmarks that focus on:

- Maintaining a facility in a weather tight condition;
- Providing an adequate level of health and safety for occupants;
- Safeguarding capital investment in facilities;
- Helping meet or exceed the projected design life of key facility systems;
- Providing a baseline for maintenance planning.

DEFICIENCY DOCUMENTATION

Documentation of emerging capital repair deficiencies was accomplished using a field data collection protocol. The deficiency data collection protocol includes five elements:

1) Campus/building identification information and deficiency designation;
2) Capital repair category and component identification;
3) Deficiency description, location, and associated quantity information;
4) Deficiency prioritization scoring choices;
5) Alternative repair information, if applicable and a MACC cost estimate.

DEFICIENCY SCORING

To assist in the process of allocating capital repair funding, each deficiency receives a score that reflects its relative severity or priority compared to other deficiencies. The scoring system is designed to maximize the objectivity of the surveyor.

A two-step scoring process has been developed for this purpose. First, a deficiency is designated as immediate, deferrable or future, based on the following definitions:
Immediate - A deficiency that immediately impacts facility systems or programs and should be corrected as soon as possible. This type of deficiency is recommended to be included in the 2015-2017 proposed capital budget;

Deferrable - A deficiency that does not immediately impact facility systems or programs where repairs or replacement can be deferred. This type of deficiency is recommended to be included in the 2017–2019 capital budget.

Future - A deficiency that does not immediately impact facility systems or programs where repairs or replacement can be deferred beyond the 2017-2019 biennium.

Second, a Priority is assigned to the deficiency by selecting either one or two potential levels of impact in descending order of relative importance:

- Health/Safety
- Building Function Use
- System Use
- Increased Repair/Replacement Cost
- Increased Operating Cost
- Quality of Use

Each impact choice is relatively less important than the one preceding it, and is assigned a percentage. If two priorities are chosen, they must total 100%.

A score is calculated for each deficiency by multiplying the deficiency category score by the priority score.

A detailed discussion of the deficiency severity scoring methodology is provided in Appendix A.
The MACC cost estimates that have been provided for each deficiency represent the total labor and material cost for correcting the deficiency, including sub-contractor overhead and profit. The estimates are based either on the R.S. Means series of construction and repair and remodeling cost guides for 2013, data from campus consultants provided to the SBCTC by the college, or the consultant’s own cost database. In some cases cost estimates are also obtained directly from vendors or construction specialists.

The cost estimates provided have been developed to be “conservative” in terms of total cost. However, since the condition survey is based on a visual assessment, there are often aspects of a deficiency that cannot be ascertained as they are hidden from view and a clear picture of the extent of deterioration cannot be determined until such time as a repair is actually undertaken. An example of this would be roof insulation or decking. Typically a roof membrane replacement will not require insulation or decking replacement. However, there are instances where once the membrane is removed it is determined that the decking and/or insulation must also be replaced. In most cases the estimate for membrane replacement will not include insulation and/or decking unless it is apparent through visual indications on the surface of the deck via blisters or indication on the underside via extensive staining, that the deck and/or insulation are also deteriorated. Or it may be determined that the roof has inadequate slope or crickets for drainage that can only be remedied through additional rigid insulation.

In some cases, if it is strongly suspected or evident that an unobservable condition exists, the cost estimate is increased to include this contingency. However, assumptions about underlying conditions are often difficult to make and, unless there is compelling evidence, such as a detailed engineering or architectural assessment, the estimate will not reflect non-observable or non-ascertainable conditions. Similarly, the extent of many structural deficiencies that may be behind walls, above ceilings, or below floors is not visible and there are often no apparent signs of additional damage beyond what is apparent on the surface. In such situations the cost estimate only includes the observable deficiency unless documentation to the contrary is provided. This can, and has in many instances, resulted in what may be termed “latent conditions,” where the actual repair cost once work is undertaken is higher than the original MACC estimate. Typically a contingency amount is added into the MACC estimate. However, even this may not be enough in some cases to cover some unforeseen costs.

Alternatively, “scope creep” sometimes occurs due to college decisions to change the scope of the repair after funding is received compared to what the deficiency write-up envisioned. Such modifications may occur for a variety of reasons. However, since the survey consultant is not performing a design when developing the deficiency write-up, changes in scope once a deficiency is finalized will result in inadequate funding for that repair.
In some cases the SBCTC may also request that the college retain an architectural or engineering consultant to conduct a more detailed analysis of the problem and develop an appropriate corrective recommendation and associated cost estimate for submittal to the SBCTC.

SURVEY DATA MANAGEMENT AND REPORTING

The deficiency data identified and documented during the survey process is entered into a computerized database management system developed for the 1995 baseline survey and updated for the 1999 survey. The DBMS is currently built with Microsoft’s Access 2007 database software.

Data reporting from the database system is accomplished through a set of standardized detail and summary reports that provide a significant amount of information useful for capital repair as well as maintenance planning and programming.
SECTION 2

SUMMARY / DETAIL REPORTS

IN THIS SECTION:

- Facility Deficiency Summary
- Facility Deficiency Details
- Site / Building Condition
 - Facility Condition Overview
The individual deficiency pages presented in this subsection of the report are divided into two parts.

1) The first part includes a summary report showing the facility deficiencies grouped by location.

2) The second part includes a summary level list of all facility deficiencies, sorted by severity score (highest to lowest).
FACILITY CONDITION SURVEY - SITE REPAIR PROGRAMMING SUMMARY BY BUILDING

Wenatchee Valley College

<table>
<thead>
<tr>
<th>SITE NAME/ FACILITY</th>
<th>CRITICAL</th>
<th>2015 COST</th>
<th>2017 COST</th>
<th>BACKLOG COST</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wenatchee Campus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150BLM Library/Media</td>
<td>$30,000</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$30,000</td>
</tr>
<tr>
<td>150BTJ Batjer Hall</td>
<td>$59,000</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$59,000</td>
</tr>
<tr>
<td>150GYM Gymnasium</td>
<td>$39,000</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$39,000</td>
</tr>
<tr>
<td>150WEL Wells</td>
<td>$142,000</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$142,000</td>
</tr>
<tr>
<td>SITE TOTAL</td>
<td>$270,000</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$270,000</td>
</tr>
<tr>
<td>COLLEGE</td>
<td>$270,000</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$270,000</td>
</tr>
</tbody>
</table>
FACILITY CONDITION SURVEY - FACILITY REPAIR PROGRAMMING SUMMARY COST REPORT

Facility: 150BLM Library/Media
Year Built: 1972
CRV/SF: $285
Current Replacement Value: $9,620,460

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>Facility</td>
<td>F05</td>
<td>Window sill and stucco</td>
<td>There is water infiltration occurring at various window sills. The water has caused some deterioration of the stucco soffit and lower walls. The storefront windows should be re-sealed/flashed to keep water outside of the building envelope. The stucco soffits and walls should be repaired.</td>
<td>$30,000</td>
<td>$0</td>
<td>$0</td>
<td>$30,000</td>
<td>$30,000</td>
</tr>
</tbody>
</table>

Number of Deficiencies = 1
Average Severity Score = 80
Facility Total = $30,000
Facility Condition Index (Repair Cost as a % of Current Replacement Value) = 0.3%
Repair Cost Per SF = $0.89

FCI (Facility Condition Index) = Repair Cost/Building Current Replacement Value (CRV)
The lower the FCI %, the better the overall facility condition. The higher the FCI %, the greater the repair and/or renovation requirements.
Facility Condition Survey - Facility Repair Programming Summary Cost Report

Wenatchee Valley College

Wenatchee Campus

- **FACILITY:** 150BTJ
- **Batjer Hall**
- **YR. BUILT:** 1950
- **CRV/SF:** $300
- **CURRENT REPLACEMENT VALUE:** $8,713,500

Facility Scores and Deficiencies

<table>
<thead>
<tr>
<th>SCORE</th>
<th>SYSTEM</th>
<th>DEF. NO.</th>
<th>COMPONENT</th>
<th>DEFICIENCY/CORRECTION</th>
<th>CRITICAL COST</th>
<th>2015 COST</th>
<th>2017 COST</th>
<th>BACKLOG COST</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>Facility</td>
<td>F03</td>
<td>Roof and soffit</td>
<td>The canopy roof is leaking and has allowed water to flow onto the exposed structure and soffit below. The roofing should be replaced with single-ply roofing. The structure and soffit should be scraped and re-painted.</td>
<td>$25,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Facility</td>
<td>F02</td>
<td>Air handler</td>
<td>The air handler is near the end of its useful life. The coils leak and the damper actuator does not consistently function. Since the cost of repair is more than 50% of the unit replacement cost, this unit should be replaced.</td>
<td>$34,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NO. OF DEFICIENCIES = 2
Average Severity Score = 76
FACILITY TOTAL = $59,000

Facility Condition Index (Repair Cost as a % of Current Replacement Value)

- **FCI (Facility Condition Index) = Repair Cost/Building Current Replacement Value (CRV)**
- **The lower the FCI %, the better the overall facility condition. The higher the FCI %, the greater the repair and/or renovation requirements.**

FCI Cost Per SF = $2.03

<table>
<thead>
<tr>
<th>FACILITY TOTAL</th>
<th>$59,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACKLOG COST</td>
<td>$0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$59,000</td>
</tr>
</tbody>
</table>
FACILITY CONDITION SURVEY - FACILITY REPAIR PROGRAMMING SUMMARY COST REPORT

Wenatchee Valley College

FACILITY: 150GYM Gymnasium
YR. BUILT: 1962 CRV/SF: $265 CURRENT REPLACEMENT VALUE: $4,485,125

SEVER. COMPONENT SCORE SYSTEM DEF. NO. DEFICIENCY/CORRECTION CRITICAL COST 2015 COST 2017 COST BACKLOG COST TOTAL COST

72 Facility F01 Rooftop HVAC
Both of the rooftop HVAC units have failed compressors and failing damper actuators. Each unit has two compressors. One unit has two failed compressors the other unit has one failed compressor. Both units damper actuators do not function correctly. Since repair costs exceed 50% of replacement costs, the units should be

<table>
<thead>
<tr>
<th>NO. OF DEFICIENCIES</th>
<th>= 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Severity Score</td>
<td>= 72</td>
</tr>
</tbody>
</table>

FACILITY CONDITION INDEX (Repair Cost as a % of Current Replacement Value) 0.9% Repair Cost Per SF = $2.30

Facility Repair Cost: $39,000

FCI (Facility Condition Index) = Repair Cost/Building Current Replacement Value (CRV)
The lower the FCI %, the better the overall facility condition. The higher the FCI %, the greater the repair and/or renovation requirements.
FACILITY CONDITION SURVEY - FACILITY REPAIR PROGRAMMING SUMMARY COST REPORT

Wenatchee Valley College

Facility: 150WEL Wells

<table>
<thead>
<tr>
<th>YR. BUILT</th>
<th>CRV/SF</th>
<th>CURRENT REPLACEMENT VALUE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1952</td>
<td>$300</td>
<td>$11,075,400</td>
</tr>
</tbody>
</table>

FACILITY CONDITION INDEX (Repair Cost as a % of Current Replacement Value)

FCI (Facility Condition Index) = Repair Cost/Building Current Replacement Value (CRV)

The lower the FCI %, the better the overall facility condition. The higher the FCI %, the greater the repair and/or renovation requirements.

64 Facility F06 HVAC

There are six univent units serving rooms 1060A through 1060E that are at the end of their useful life. The facility staff identified these units as a deficiency after the survey. There are also three units in rooms 1073 through 1075 that are beyond their useful life. Many of the units no longer function. These units are roughly 40 years old. They are located in wing 5 of the building. The other four wings of the building are planned for demolition. These units and their related piping and controls should be replaced.

NO. OF DEFICIENCIES = 1 Average Severity Score = 64 FACILITY TOTAL $142,000 $0 $0 $142,000

Facility Condition Index (Repair Cost as a % of Current Replacement Value) 1.3% Repair Cost Per SF = $3.85
FACILITY DEFICIENCY DETAIL

The individual deficiency pages presented in this subsection of the report are divided into five parts.

3) The first part identifies the college and campus; facility number and name; primary building use; and provides the date of the field survey.

4) The second part identifies the assigned deficiency number; the applicable capital repair funding category; the deferability recommendation; the affected component; and the affected building system.

5) The third part provides a description of the deficiency and recommended corrective action, and any applicable sizing data.

6) The fourth part identifies the deficiency location; the probable cause of the deficiency; estimated remaining life and life expectancy when repaired or replaced; the quantity involved; and estimated replacement dates over a 50 year life cycle if a replacement rather than a repair is recommended.

7) The fifth part provides the MACC cost estimate and the deficiency score for that deficiency based on the priority assignment and percentage allocation for the assigned priorities.
FACILITY CONDITION SURVEY

Wenatchee Valley College
Wenatchee Campus

FACILITY: 150BLM Library/Media
STATE UFI: A02712

DEFICIENCY: F05 Facility Fund in 2015-17 biennium
UNIFORMAT BUILDING SYSTEM: B20-Exterior Enclosure Library
AFFECTED COMPONENT: Window sill and stucco

DEFICIENCY/CORRECTION:
There is water infiltration occurring at various window sills. The water has caused some deterioration of the stucco soffit and lower walls. The storefront windows should be re-sealed/flashed to keep water outside of the building envelope. The stucco soffits and walls should be repaired.

LOCATION: Lower level on the north and west side of the building enclosure

Probable Cause of Deficiency is Unknown

ESTIMATED REMAINING LIFE: 3 Yrs. LIFE EXPECTANCY NEW: 25 Yrs. QUANTITY: 1 LS

PRIORITY
Bldg. Function Use 100
0
Deficiency Severity 80 Estimated MACC Repair Cost in 2013= $30,000
FACILITY CONDITION SURVEY

Wenatchee Valley College
Wenatchee Campus

FACILITY: 150BTJ Batjer Hall

DEFICIENCY: F03 Facility Fund in 2015-17 biennium
UNIFORMAT BUILDING SYSTEM: B30-Roofing Student Center
AFFECTED COMPONENT: Roof and soffit

DEFICIENCY/CORRECTION:
The canopy roof is leaking and has allowed water to flow onto the exposed structure and soffit below. The roofing should be replaced with single-ply roofing. The structure and soffit should be scraped and re-painted.

LOCATION: building entrance

Probable Cause of Deficiency is Age/Wear

ESTIMATED REMAINING LIFE: 3 Yrs. LIFE EXPECTANCY NEW: 30 Yrs. QUANTITY:
50Yr. Life Cycle Replace in 2016 2046 1 LS

PRIORITY

Bldg. Function Use 100
0

Deficiency Severity 80 Estimated MACC Repair Cost in 2013= $25,000
DEFICIENCY: F02 Facility Fund in 2015-17 biennium
UNIFORMAT BUILDING SYSTEM: D30-HVAC Student Center
AFFECTED COMPONENT: Air handler

DEFICIENCY/CORRECTION:
The air handler is near the end of its useful life. The coils leak and the damper actuator does not consistently function. Since the cost of repair is more than 50% of the unit replacement cost, this unit should be replaced.

LOCATION: Mechanical room
Probable Cause of Deficiency is Age/Wear

ESTIMATED REMAINING LIFE: 3 Yrs. LIFE EXPECTANCY NEW: 25 Yrs. QUANTITY:
50Yr. Life Cycle Replace in 2016 2041 2066 1 LS

PRIORITY
Bldg. Function Use 60
System Use 40
Deficiency Severity 72 Estimated MACC Repair Cost in 2013= $34,000
FACILITY CONDITION SURVEY

Wenatchee Valley College
Wenatchee Campus

FACILITY: 150BTJ Batjer Hall

DEFICIENCY: F04 Facility Do Not Fund at This Time

UNIFORMAT BUILDING SYSTEM: F10-Special Construction Student Center

AFFEFFECTED COMPONENT: Steam stack

DEFICIENCY/CORRECTION:
The facility staff were concerned about the structural integrity of the steam stack due to its age. The stack is now used for the boiler exhaust rather than as originally intended. The stack should be reviewed by a structural engineer to determine if the stack should be strengthened or partially removed.

LOCATION: Through core of building up through roof

Probable Cause of Deficiency is Seismic

ESTIMATED REMAINING LIFE: 20 Yrs. LIFE EXPECTANCY NEW: 50 Yrs. QUANTITY:

Additional Analysis or Study is Required

PRIORITY
Health/Safety 60
Bldg. Function Use 40
Deficiency Severity 23 Estimated MACC Repair Cost in 2013=
FACILITY CONDITION SURVEY

<table>
<thead>
<tr>
<th>FACILITY</th>
<th>150GYM Gymnasium</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFICIENCY</td>
<td>F01 Facility Fund in 2015-17 biennium</td>
</tr>
<tr>
<td>UNIFORMAT BUILDING SYSTEM</td>
<td>D30-HVAC Gymnasium</td>
</tr>
<tr>
<td>AFFECTED COMPONENT</td>
<td>Rooftop HVAC</td>
</tr>
</tbody>
</table>

DEFICIENCY/CORRECTION:
Both of the rooftop HVAC units have failed compressors and failing damper actuators. Each unit has two compressors. One unit has two failed compressors the other unit has one failed compressor. Both units damper actuators do not function correctly. Since repair costs exceed 50% of replacement costs, the units should be replaced.

LOCATION: Roof

Probable Cause of Deficiency is Age/Wear

ESTIMATED REMAINING LIFE: 3 Yrs.
LIFE EXPECTANCY NEW: 25 Yrs.
QUANTITY:

50Yr. Life Cycle Replace in 2016 2041 2066 1 LS

PRIORITY

<table>
<thead>
<tr>
<th>Bldg. Function Use</th>
<th>System Use</th>
<th>Deficiency Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>40</td>
<td>72</td>
</tr>
</tbody>
</table>

Estimated MACC Repair Cost in 2013 = $39,000
FACILITY: 150WEL Wells

DEFICIENCY: F06 Facility Fund in 2015-17 biennium
UNIFORMAT BUILDING SYSTEM: D30-HVAC General Classroom
AFFECTED COMPONENT: HVAC

DEFICIENCY/CORRECTION:
There are six univent units serving rooms 1060A through 1060E that are at the end of their useful life. The facility staff identified these units as a deficiency after the survey. There are also three units in rooms 1073 through 1075 that are beyond their useful life. Many of the units no longer function. These units are roughly 40 years old. They are located in wing 5 of the building. The other four wings of the building are planned for demolition. These units and their related piping and controls should be replaced.

LOCATION: Classrooms
Probable Cause of Deficiency is Age/Wear
ESTIMATED REMAINING LIFE: 3 Yrs. LIFE EXPECTANCY NEW: 30 Yrs. QUANTITY: 50Yr. Life Cycle Replace in 2016 2046 9 EA

PRIORITY
Bldg. Function Use 20
System Use 80
Deficiency Severity 64 Estimated MACC Repair Cost in 2013= $142,000
F01 – HVAC unit on the Smith Gymnasium building

F02 – Air handler in the Van Tassell Center building

F03 – Roofing on the Van Tassell Center building

F04 – Steam stack on the Van Tassell Center building

F05 – Windows on the Brown Library building

F06 – HVAC in the Wells Hall building
As part of the condition survey update, the building condition scores for college facilities are updated. This condition score is derived from an evaluation of 17 building system adequacy components, one maintenance condition rating component, one estimate of remaining life, and an appearance rating, with a numerical rating assigned to each component. Each individual component rating is adjusted by a multiplier to produce a score for that component. The scores of all components are totaled to provide an overall condition score for each facility, which can range between 146 points and 730 points. The higher the score received by a facility the poorer its overall condition. The entire score range is divided into five sub-sets of score ranges, and a condition rating designation is assigned to each range. The ranges and associated condition ratings are as follows:

- 146 – 175 = Superior;
- 176 - 275 = Adequate;
- 276 – 350 = Needs Improvement/Additional Maintenance;
- 351 – 475 = Needs Improvement/Renovation (If facility merits keeping);
- 476 – 730 = Replace or Renovate.

Originally the condition ratings were developed to provide an overall picture of the physical condition of a facility and allow a comparison among colleges of overall condition. However, over time the rating scores were viewed more and more by both the SBCTC and the colleges as a key element in determining funding for facility replacement or renovation. The original intent of a simple comparative process became subject to pressure to score facilities low (high score) to support college plans for replacement and/or renovation. This pressure made it increasingly difficult for the consultant to remain objective. The buildings currently being targeted by colleges for replacement or renovation may deserve replacement or renovation consideration from a functional, program adequacy, design, or simply age point of view. However they may also be in reasonably good physical condition, largely because most colleges have continued to replace/update building systems and perform on-going repairs or replacement of system components out of necessity.

In 2011 three rating elements of the 23 original rating elements were removed. Two, named “Adaptability” and “Adequacy for Education” evaluated the functional adequacy of a building for educational use. The third, named “ADA”, evaluated the overall ADA compliance of a college. Buildings are now being rated only on their comparative objective physical condition. If a building that is a high priority for replacement or renovation has newer or adequate building system components, the score for the affected rating elements and for the building will reflect that fact.
Functional adequacy, program adequacy, age, design, classroom size, office size, building size, ADA considerations and grandfathered code considerations will be considered separately from the building condition ratings. This should once again allow greater objectivity in the condition rating process.

One result of this modification is a slight change in total score from last biennium for some buildings. This is because the intent was to keep the scoring range the same-146 to 730. However, the elimination of three rating items required a redistribution of the scoring range among fewer items, which necessitated revising several of the weightings associated with several rating elements. For example, where a score of 1 may have had a weighting of 6, it became a 7. Overall, however, the changes should not impact the various scoring ranges unless the previous score was right on the boundary between ranges.

In addition to comments for a rating element, which was all that was printed on the reports in the past, the rating description associated with a 1, 3 or 5 score for each rating element is now also included. Any comments are now in italics below this description.

An average building condition score is also calculated for a college as a whole. This score is a weighted average rather than an arithmetic average. It was decided to use a weighted average because, in many instances, the arithmetic average was not truly reflective of the “average” condition of a college. Smaller buildings, such as portables that were in poor condition, could increase (worsen) the average score for a college, even if most other larger facilities were in good condition. The weighted average score is calculated by summing the GSF of all buildings rated and dividing that total by the total of all individual building scores.

FACILITY CONDITION OVERVIEW

BUILDING CONDITIONS

Individual facility scores for the permanent facilities ranged from a low of 146 for the Wenatchi Hall to a high of 554 for the Wells building. Building scores are derived from the summation of 20 building component scores.

Building component scores change from previous scores for various reasons. Scores tend to increase as buildings age and deteriorate. Scores may increase because of recent renovations. Scores may also vary slightly based on the interpreted conditions, which may be affected by the level of maintenance.
The condition rating reports for each individual facility are provided on the following pages. Photos of each building rated are provided at the end of this section.
BUILDING CONDITION RATING

COLLEGE: Wenatchee Valley College
SITE: Wenatchee Campus
BLDG: 150BLM
STATE UFI: A02712
33,756 SF
BUILT: 1972
REMODELED: 2007
PREDOMINANT BLDG. USE: Library
CONSTRUCTION TYPE: Heavy
CRV/SF: $301
CURRENT REPLACEMENT VALUE: $10,160,556
MGMT. CODE: Manage with RMI Repair and Minor Works

### Component	Score	Comment
Primary Systems
Structure | 8 | No settlement or cracking evident; no abrupt vertical changes; bearing walls and roof structure are sound
Poured concrete; brick; steel; concrete columns

Exterior Closure | 24 | Exterior walls, doors, windows, soffits and finishes are sound and weatherproof, but with moderate deterioration evident
Brick; concrete; aluminum window walls

Roofing | 10 | Membrane appears water-tight and flashings and penetrations are sound; drainage is positive
New TPO single-ply membrane installed in 2011

Subtotal = 42

Secondary Systems

Floor Finishes | 6 | Floor surfaces have a nice appearance and exhibit minimal random wear
Carpet tile; concrete; vinyl tile; sheet vinyl

Walls - Finishes | 6 | Wall surfaces are in good condition with minimal finish deterioration, wear or damage
Brick and gypsum board

Ceiling Finishes | 6 | Ceiling surfaces are in good condition with minimal finish deterioration, wear or component
Gypsum board; lay-in tile

Doors - Hardware | 6 | Door finishes are in good condition and exhibit only minor random wear; door hardware is in good working order
Interior laminate/wood doors w HM/wood frames; exterior aluminum doors/frames

Subtotal = 24

Service Systems

Elevators | 6 | Elevators are appropriate and functional for use; car interiors have minimal deterioration and controls are in good condition
3 stop-renovated in 2007

Plumbing | 8 | Piping appears in generally good condition, with no recurring leak problems; fixtures are in good condition
Copper, cast iron, black steel and galvanized piping; porcelain fixtures
HVAC 8 HVAC equipment is in good condition, easily controlled, and serves all required spaces; ventilation is adequate
 Chiller; hot water boiler; reheat coils; unit ventilators; new AHU in basement in 07

Electrical Service 8 Service and distribution capacity is adequate for current and future needs
 1000amp 208/120v

Lights/Power 8 Contemporary lighting with good work area and instructional space illumination
 Lay-in, ceiling-mount, hanging strip and recessed can fluorescent lights

Safety Systems
Life/Safety 30 Building generally meets codes for vintage of construction

Fire Safety 30 Fire alarm/pull stations but no sprinklers, illuminated exit signs and/or emergency lights

Haphazard Modification 7 Modifications appear to be well constructed and in compliance with codes; HVAC and electrical service fully support spaces
 Basement remodeled for WHETS in 1990; good construction

Subtotal = 67

Quality Standards
Maint. Quality 7 Facility appears to be well maintained

Remaining Life 6 Life expectancy is greater than 15 years; building systems in good condition
 Extensive interior remodel in 2007; structurally sound building in good condition

Appearance 6 Well constructed building; generally attractive exterior and interior spaces

Subtotal = 19

Energy
Wall/Ceiling Insulation 6 Insulation generally meets current standards

Glazing 30 Windows have single-glazing
 Single glazing; aluminum-framed

Subtotal = 36

Total Score = 226
(Score Range = 146 - Previous Biennium 210)
Recommended Rating is: Adequate
BUILDING CONDITION RATING

COLLEGE: Wenatchee Valley College
SITE: Wenatchee Campus
BLDG: 150BTJ Batjer
STATE UFI: A04052
BUILT: 1950
REMODELED:
CONSTRUCTION TYPE: Medium
CRV/SF: $316
CURRENT REPLACEMENT VALUE: $9,178,220
MGMT. CODE: Replace - $150-$350/SF

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Systems</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Structure | 24 | Minor to moderate cracking evident, but does not affect structural integrity; visible defects but not structural
Concrete; steel framing; concrete slab |
| Exterior | 24 | Exterior walls, doors, windows, soffits and finishes are sound and weatherproof, but with moderate deterioration evident
Concrete; brick |
| Closure | | |
| Roofing | 10 | Membrane appears water-tight and flashings and penetrations are sound; drainage is positive
Hypalon single-ply/cap sheet; concrete parapet replacement in 08 |
| **Subtotal** | = 58 | |

| **Secondary Systems** | | |
| Floor Finishes | 30 | A majority of floor surfaces exhibit extensive wear and deterioration and should no longer be maintained
Vinyl tile; concrete; carpet |
| Walls - Finishes | 18 | Wall surfaces exhibit random finish deterioration and moderate wear and/or damage; maintenance is required
CMU; gypsum board; ceramic tile; concrete |
| Ceiling - Finishes | 18 | Ceiling surfaces exhibit random finish deterioration and moderate wear and/or component damage; maintenance is required
Lay-in tile; direct-adhered tile; gypsum board; metal roof deck |
| Doors- Hardware | 18 | Door surfaces exhibit random finish deterioration and moderate wear and/or component damage; hardware exhibits minor to moderate deterioration, maintenance is required
Interior wood/HM doors/HM frames; exterior metal frame glazed doors; metal OH doors |
| **Subtotal** | = 84 | |

| **Service Systems** | | |
| Elevators | 30 | No elevator provided for multi-story building; extensive deterioration of car interiors is evident and controls malfunction frequently-refurbishment is required
2 stories |
| Plumbing | 24 | Piping is older but serviceable; some recurring leaks are reported or some pipe deterioration is evident; fixtures show some wear but are serviceable; maintenance is required
Copper, galvanized and cast iron pipe; mix of old and newer fixtures |
HVAC 8 HVAC equipment is in good condition, easily controlled, and serves all required spaces; ventilation is adequate
 2 hot water boilers - new in 96; new chillers in 01; packaged rooftop unit; AHU

Electrical Service 24 Service capacity is adequate, but there may be distribution panel capacity issues
 1000amp 208/120v

Lights/Power 24 Generally adequate illumination but mostly older light fixtures
 Ceiling mount and hanging fluorescent lighting

Subtotal = 110

Safety Systems
Life/Safety 30 Building generally meets codes for vintage of construction

Fire Safety 10 Fire alarm present w locally monitored detection; sprinklers at minimum in high hazard areas;
 illuminated exit signs and/or emergency lights
 Fire alarm; sprinklers in shop areas

Haphazard Modification 21 Modifications are of average quality; HVAC and electrical service only partially support space
 Some space modifications not well thought out

Subtotal = 61

Quality Standards
Maint. Quality 21 Routine maintenance is required; deferred maintenance is evident; impact is minor to

Remaining Life 30 Life expectancy is less than 5 years; significant building system deterioration
 Building is not cost-effective to renovate; RUL <10 yrs.

Appearance 30 Average construction, but generally unattractive exterior and interior spaces

Subtotal = 81

Energy
Wall/Ceiling Insulation 18 Insulation is present, but not to current standards
 Inadequate in some areas

Glazing 18 Windows are double-glazed, but frames do not minimize conductivity
 Glass block in addition to windows

Subtotal = 36

Total Score = 430 (Score Range = 146 - Previous Biennium 430
Recommended Rating is: Needs Improvement Through Renovation
BUILDING CONDITION RATING

COLLEGE: Wenatchee Valley College

SITE: Wenatchee Campus

BLDG: 150BTJ1 Batjer/Vocational Shop Additions 1/2 **STATE UFI:** A04052

12,355 SF **BUILT:** 1991 **REMODELED:**

PREDOMINANT BLDG. USE: Vocational Arts

CONSTRUCTION TYPE: Medium **CRV/SF:** $316 **CURRENT REPLACEMENT VALUE:** $3,904,180

MGMT. CODE: Manage with RMI Repair and Minor Works

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>8</td>
<td>No settlement or cracking evident; no abrupt vertical changes; bearing walls and roof structure are sound</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steel frame; CMU; concrete slab</td>
</tr>
<tr>
<td>Exterior</td>
<td>8</td>
<td>Walls, doors, finishes and windows are weather-tight and well maintained with minimal</td>
</tr>
<tr>
<td>Closure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roofing</td>
<td>10</td>
<td>Membrane appears water-tight and flashings and penetrations are sound; drainage is positive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standing seam metal roof; greenhouse glazing</td>
</tr>
<tr>
<td>Subtotal = 26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor Finishes</td>
<td>18</td>
<td>Floor surfaces exhibit random moderate wear and random surface deterioration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carpet; exposed-aggregate concrete; vinyl tile; epoxy coating</td>
</tr>
<tr>
<td>Walls - Finishes</td>
<td>6</td>
<td>Wall surfaces are in good condition with minimal finish deterioration, wear or damage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMU; Gypsum board; good condition</td>
</tr>
<tr>
<td>Ceiling Finishes</td>
<td>6</td>
<td>Ceiling surfaces are in good condition with minimal finish deterioration, wear or component</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lay-in ceiling tile; good condition; metal roof deck</td>
</tr>
<tr>
<td>Doors- Hardware</td>
<td>18</td>
<td>Door surfaces exhibit random finish deterioration and moderate wear and/or component</td>
</tr>
<tr>
<td></td>
<td></td>
<td>damage; hardware exhibits minor to moderate deterioration, maintenance is required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interior laminate panel doors/HM frames; exterior HM doors/frames</td>
</tr>
<tr>
<td>Subtotal = 48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevators</td>
<td>6</td>
<td>One story building</td>
</tr>
<tr>
<td>Plumbing</td>
<td>8</td>
<td>Piping appears in generally good condition, with no recurring leak problems; fixtures are in good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copper, cast iron, steel and ABS piping; porcelain fixtures</td>
</tr>
</tbody>
</table>
HVAC 8 HVAC equipment is in good condition, easily controlled, and serves all required spaces; ventilation is adequate

Ceiling mounted fan coil units fed from boiler/chiller plant; packaged rooftop HVAC units

Electrical Service 8 Service and distribution capacity is adequate for current and future needs

Fed from main building service

Lights/Power 8 Contemporary lighting with good work area and instructional space illumination

Lay-in, recessed can and hanging pendant fluorescent fixtures

Subtotal = 38

Safety Systems

Fire Safety 10 Fire alarm present w locally monitored detection; sprinklers at minimum in high hazard areas; illuminated exit signs and/or emergency lights

Haphazard Modification 7 Modifications appear to be well constructed and in compliance with codes; HVAC and electrical service fully support spaces

None evident

Subtotal = 27

Quality Standards

Maint. Quality 7 Facility appears to be well maintained

Remaining Life 6 Life expectancy is greater than 15 years; building systems in good condition

Solid construction, except for EIFS; should have 25+ yr. Life

Appearance 6 Well constructed building; generally attractive exterior and interior spaces

Subtotal = 19

Energy

Wall/Ceiling Insulation 6 Insulation generally meets current standards

Glazing 18 Windows are double-glazed, but frames do not minimize conductivity

Subtotal = 24

Total Score = 182 *(Score Range = 146 - 158) Previous Biennium 158*

Recommended Rating is: Adequate
BUILDING CONDITION RATING

COLLEGE: "Wenatchee Valley College"
SITE: Wenatchee Campus
BLDG: 150CWU
Central Washington University
STATE UFI: A02877
7,667 SF
BUILT: 2006
REMODELED:
PREDOMINANT BLDG. USE: General Classroom
CONSTRUCTION TYPE: Medium
CRV/SF: $301
CURRENT REPLACEMENT VALUE: $2,307,767
MGMT. CODE: Manage with RMI Repair and Minor Works

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Systems</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Structure | 8 | No settlement or cracking evident; no abrupt vertical changes; bearing walls and roof structure are sound
Steel framing and concrete |
| Exterior | 8 | Walls, doors, finishes and windows are weather-tight and well maintained with minimal
Closure
Brick; wood; aluminum window walls; metal architectural panels |
| Roofing | 10 | Membrane appears water-tight and flashings and penetrations are sound; drainage is positive
TPO single-ply roof membrane |
| **Subtotal** | **26** | |

| **Secondary Systems** | | |
| Floor Finishes | 18 | Floor surfaces exhibit random moderate wear and random surface deterioration
Carpet; concrete; vinyl tile; quarry tile |
| Walls - Finishes | 6 | Wall surfaces are in good condition with minimal finish deterioration, wear or damage
Gypsum board; cloth and vinyl wall covering; ceramic tile; wood panels |
| Ceiling Finishes | 6 | Ceiling surfaces are in good condition with minimal finish deterioration, wear or component
Lay-in tile |
| Doors- Hardware | 6 | Door finishes are in good condition and exhibit only minor random wear; door hardware is in good working order
Interior wood laminate doors/HM frames; exterior aluminum doors/frames |
| **Subtotal** | **36** | |

| **Service Systems** | | |
| Elevators | 6 | One story building |
| Plumbing | 8 | Piping appears in generally good condition, with no recurring leak problems; fixtures are in good condition
Copper, cast iron, steel and ABS piping; porcelain fixtures |
HVAC 8 HVAC equipment is in good condition, easily controlled, and serves all required spaces; ventilation is adequate
 Packaged roof top HVAC units

Electrical Service 8 Service and distribution capacity is adequate for current and future needs
 600amp 120/208v

Lights/Power 8 Contemporary lighting with good work area and instructional space illumination
 Lay-in, recessed can and hanging fluorescent fixtures; hanging pendant fixtures

Subtotal = 38

Safety Systems

Fire Safety 10 Fire alarm present w locally monitored detection; sprinklers at minimum in high hazard areas; illuminated exit signs and/or emergency lights

Haphazard Modification 7 Modifications appear to be well constructed and in compliance with codes; HVAC and electrical service fully support spaces
 None evident

Subtotal = 27

Quality Standards

Maint. Quality 7 Facility appears to be well maintained

Remaining Life 6 Life expectancy is greater than 15 years; building systems in good condition
 Should have 40+ year life

Appearance 6 Well constructed building; generally attractive exterior and interior spaces

Subtotal = 19

Energy

Wall/Ceiling Insulation 6 Insulation generally meets current standards

Glazing 6 Windows are double-glazed, with frames that minimize conductivity

Subtotal = 12

Total Score = 158 (Score Range = 146 - Previous Biennium 146
Recommended Rating is: Superior
BUILDING CONDITION RATING

COLLEGE: Wenatchee Valley College
SITE: Wenatchee Campus

BLDG: 150EFS Eller/Fox
STATE UFI: A00748

16,200 SF
BUILT: 1988
REMODELED:
PREDOMINANT BLDG. USE: Science Lab.

CONSTRUCTION TYPE: Medium
CRV/SF: $391
CURRENT REPLACEMENT VALUE: $6,334,200

MGMT. CODE: Manage with RMI Repair and Minor Works

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>8</td>
<td>No settlement or cracking evident; no abrupt vertical changes; bearing walls and roof structure are sound</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMU; concrete</td>
</tr>
<tr>
<td>Exterior Closure</td>
<td>8</td>
<td>Walls, doors, finishes and windows are weather-tight and well maintained with minimal</td>
</tr>
<tr>
<td>Roofing</td>
<td>10</td>
<td>Membrane appears water-tight and flashings and penetrations are sound; drainage is positive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standing seam metal roof</td>
</tr>
<tr>
<td>Subtotal</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>

Secondary Systems		
Floor Finishes	18	Floor surfaces exhibit random moderate wear and random surface deterioration
		Carpet-random deterioration; vinyl tile; sheet vinyl; concrete; ceramic tile
Walls - Finishes	6	Wall surfaces are in good condition with minimal finish deterioration, wear or damage
		CMU; gypsum board; ceramic tile
Ceiling Finishes	6	Ceiling surfaces are in good condition with minimal finish deterioration, wear or component
		Lay-in tile throughout
Doors- Hardware	18	Door surfaces exhibit random finish deterioration and moderate wear and/or component
		damage; hardware exhibits minor to moderate deterioration, maintenance is required
		Interior laminate doors w HM frames; exterior HM doors/frames
Subtotal	48	

Service Systems		
Elevators	6	One story building
Plumbing	8	Piping appears in generally good condition, with no recurring leak problems; fixtures are in good condition
		Copper, cast iron, steel and ABS piping; porcelain fixtures

62
HVAC (24)
- HVAC system is generally adequate but older; minor to moderate deterioration of components is evident; maintenance/repair is required.
- Air cooled chiller-aging compressors; hot water boiler; DX refrigeration; AHUs w VAV
- Service and distribution capacity is adequate for current and future needs.
 - 1200amp 120/208v
- Contemporary lighting with good work area and instructional space illumination.
 - Lay-in ceiling fluorescent lighting

Subtotal = 54

Electrical Service (8)
- Service and distribution capacity is adequate for current and future needs.
 - 1200amp 120/208v

Lights/Power (8)
- Contemporary lighting with good work area and instructional space illumination.
 - Lay-in ceiling fluorescent lighting

Safety Systems (10)
- Building appears to meet current codes.

Fire Safety (30)
- Fire alarm/pull stations but no sprinklers, illuminated exit signs and/or emergency lights

Haphazard Modification (7)
- Modifications appear to be well constructed and in compliance with codes; HVAC and electrical service fully support spaces.
 - No modifications evident

Subtotal = 47

Quality Standards (7)
- Facility appears to be well maintained.

Remaining Life (6)
- Life expectancy is greater than 15 years; building systems in good condition.
 - Newer building-average construction; 25-30 years of remaining life

Appearance (6)
- Well constructed building; generally attractive exterior and interior spaces

Subtotal = 19

Energy (6)
- Insulation generally meets current standards

Glazing (18)
- Windows are double-glazed, but frames do not minimize conductivity

Subtotal = 24

Total Score = 218 (Score Range = 146 - 288)
Previous Biennium = 206

Recommended Rating is: Adequate
BUILDING CONDITION RATING

College: Wenatchee Valley College
Site: Wenatchee Campus
Bldg: 150FAC
Facilities and Operations
State UFI: A08925
7,339 SF
Built: 2009
Remodeled:
Construction Type: Medium
Crv/Sf: $211
Predominant Bldg. Use: Maintenance
Mgmt. Code: Manage with RMI Repair and Minor Works

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>8</td>
<td>No settlement or cracking evident; no abrupt vertical changes; bearing walls and roof structure are sound</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steel frame; CMU</td>
</tr>
<tr>
<td>Exterior</td>
<td>8</td>
<td>Walls, doors, finishes and windows are weather-tight and well maintained with minimal</td>
</tr>
<tr>
<td>Closure</td>
<td></td>
<td>Metal panel; CMU</td>
</tr>
<tr>
<td>Roofing</td>
<td>10</td>
<td>Membrane appears water-tight and flashings and penetrations are sound; drainage is positive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Metal panel</td>
</tr>
<tr>
<td>Subtotal =</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Secondary Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor Finishes</td>
<td>6</td>
<td>Floor surfaces have a nice appearance and exhibit minimal random wear</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vinyl tile; concrete; sheet vinyl</td>
</tr>
<tr>
<td>Walls - Finishes</td>
<td>6</td>
<td>Wall surfaces are in good condition with minimal finish deterioration, wear or damage</td>
</tr>
<tr>
<td>Ceiling Finishes</td>
<td>6</td>
<td>Ceiling surfaces are in good condition with minimal finish deterioration, wear or component</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lay-in tile</td>
</tr>
<tr>
<td>Doors - Hardware</td>
<td>6</td>
<td>Door finishes are in good condition and exhibit only minor random wear; door hardware is in good working order</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exterior/interior HM doors/frames; OH sectional metal doors</td>
</tr>
<tr>
<td>Subtotal =</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Service Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevators</td>
<td>6</td>
<td>One story building</td>
</tr>
<tr>
<td>Plumbing</td>
<td>8</td>
<td>Piping appears in generally good condition, with no recurring leak problems; fixtures are in good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copper, cast iron and black steel piping; porcelain fixtures</td>
</tr>
</tbody>
</table>
HVAC 8 HVAC equipment is in good condition, easily controlled, and serves all required spaces; ventilation is adequate
 FAG unit heaters; FAG furnaces w cooling coils

Electrical Service 8 Service and distribution capacity is adequate for current and future needs
 600amp 208/120v

Lights/Power 8 Contemporary lighting with good work area and instructional space illumination
 Lay-in and hanging fluorescent lighting

Subtotal = 38

Safety Systems
Life/Safety 10 Building appears to meet current codes

Fire Safety 30 Fire alarm/pull stations but no sprinklers, illuminated exit signs and/or emergency lights

Haphazard Modification 7 Modifications appear to be well constructed and in compliance with codes; HVAC and electrical service fully support spaces
 None; built in 2009

Subtotal = 47

Quality Standards
Maint. Quality 7 Facility appears to be well maintained

Remaining Life 6 Life expectancy is greater than 15 years; building systems in good condition
 New building; RUL >25 yrs.

Appearance 6 Well constructed building; generally attractive exterior and interior spaces
 Very nice interior/exterior for maintenance building

Subtotal = 19

Energy
Wall/Ceiling Insulation 6 Insulation generally meets current standards

Glazing 18 Windows are double-glazed, but frames do not minimize conductivity

Subtotal = 24

Total Score = 178 (Score Range = 146 - Previous Biennium 178

Recommended Rating is: Adequate
BUILDING CONDITION RATING

COLLEGE: Wenatchee Valley College
BLDG: 150GYM
STATE UFI: A05684
SITE: Wenatchee Campus
BUILT: 1962
REMODELED:
CONSTRUCTION TYPE: Medium
CURRENT REPLACEMENT VALUE: $4,722,075

Component Score Comment

Primary Systems

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>24</td>
<td>Minor to moderate cracking evident, but does not affect structural integrity; visible defects but not structural</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steel; concrete; CMU; wood beams; some seismic concerns</td>
</tr>
<tr>
<td>Exterior Closure</td>
<td>24</td>
<td>Exterior walls, doors, windows, soffits and finishes are sound and weatherproof, but with moderate deterioration evident</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMU; concrete wall panels-minor cracking</td>
</tr>
<tr>
<td>Roofing</td>
<td>10</td>
<td>Membrane appears water-tight and flashings and penetrations are sound; drainage is positive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single-ply hypalon roof membrane-new in 2004</td>
</tr>
</tbody>
</table>

Subtotal = 58

Secondary Systems

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor Finishes</td>
<td>18</td>
<td>Floor surfaces exhibit random moderate wear and random surface deterioration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hardwood; carpet; vinyl tile; ceramic tile; concrete</td>
</tr>
<tr>
<td>Walls - Finishes</td>
<td>18</td>
<td>Wall surfaces exhibit random finish deterioration and moderate wear and/or damage; maintenance is required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMU; gypsum board; ceramic tile; Dryvit panels</td>
</tr>
<tr>
<td>Ceiling Finishes</td>
<td>18</td>
<td>Ceiling surfaces exhibit random finish deterioration and moderate wear and/or component damage; maintenance is required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tectum panels; gypsum board; lay-in tile; wood roof deck</td>
</tr>
<tr>
<td>Doors- Hardware</td>
<td>18</td>
<td>Door surfaces exhibit random finish deterioration and moderate wear and/or component damage; hardware exhibits minor to moderate deterioration, maintenance is required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interior HM/laminate/wood doors w wood/HM frames; exterior HM doors/frames</td>
</tr>
</tbody>
</table>

Subtotal = 72

Service Systems

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevators</td>
<td>6</td>
<td>One story building</td>
</tr>
<tr>
<td>Plumbing</td>
<td>24</td>
<td>Piping is older but serviceable; some recurring leaks are reported or some pipe deterioration is evident; fixtures show some wear but are serviceable; maintenance is required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copper, cast iron, steel and galvanized piping; partial water piping replaced in 04; older porcelain fixtures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVAC</td>
<td>24</td>
<td>HVAC system is generally adequate but older; minor to moderate deterioration of components is evident; maintenance/repair is required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rooftop packaged units; mix of vintages</td>
</tr>
<tr>
<td>Electrical Service</td>
<td>8</td>
<td>Service and distribution capacity is adequate for current and future needs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800amp 277/480v</td>
</tr>
<tr>
<td>Lights/Power</td>
<td>24</td>
<td>Generally adequate illumination but mostly older light fixtures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ceiling mount, hanging and lay-in fluorescent lighting</td>
</tr>
<tr>
<td>Subtotal</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Safety Systems</td>
<td>30</td>
<td>Building generally meets codes for vintage of construction</td>
</tr>
<tr>
<td>Life/Safety</td>
<td>30</td>
<td>Fire alarm/pull stations but no sprinklers, illuminated exit signs and/or emergency lights</td>
</tr>
<tr>
<td>Haphazard</td>
<td>21</td>
<td>Modifications are of average quality; HVAC and electrical service only partially support space</td>
</tr>
<tr>
<td>Subtotal</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Quality Standards</td>
<td>21</td>
<td>Routine maintenance is required; deferred maintenance is evident; impact is minor to</td>
</tr>
<tr>
<td>Maint. Quality</td>
<td>30</td>
<td>Life expectancy is less than 5 years; significant building system deterioration</td>
</tr>
<tr>
<td>Subtotal</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Appearance</td>
<td>30</td>
<td>Average construction, but generally unattractive exterior and interior spaces</td>
</tr>
<tr>
<td>Subtotal</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>18</td>
<td>Insulation is present, but not to current standards</td>
</tr>
<tr>
<td>Wall/Ceiling</td>
<td>18</td>
<td>Windows are double-glazed, but frames do not minimize conductivity</td>
</tr>
<tr>
<td>Subtotal</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

Total Score = 414
(Score Range = 146 - Previous Biennium 414)

Recommended Rating is: **Needs Improvement Through Renovation**
BUILDING CONDITION RATING

COLLEGE: Wenatchee Valley College
SITE: Wenatchee Campus

BLDG: 150GYM1
STATE UF: A05684

8,976 SF
BUILT: 1990
REMODELED:
CONSTRUCTION TYPE: Medium
CRV/SF: $279
CURRENT REPLACEMENT VALUE: $2,504,304

MGMT. CODE: Manage with RMI Repair and Minor Works

Component Score Comment

Primary Systems

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>8</td>
<td>No settlement or cracking evident; no abrupt vertical changes; bearing walls and roof structure are sound</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steel; CMU</td>
</tr>
<tr>
<td>Exterior</td>
<td>8</td>
<td>Walls, doors, finishes and windows are weather-tight and well maintained with minimal</td>
</tr>
<tr>
<td>Closure</td>
<td></td>
<td>CMU; EIFS</td>
</tr>
<tr>
<td>Roofing</td>
<td>10</td>
<td>Membrane appears water-tight and flashings and penetrations are sound; drainage is positive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single-ply hypalon roof membrane</td>
</tr>
</tbody>
</table>

Subtotal = 26

Secondary Systems

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor Finishes</td>
<td>6</td>
<td>Floor surfaces have a nice appearance and exhibit minimal random wear</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carpet; hardwood; concrete</td>
</tr>
<tr>
<td>Walls - Finishes</td>
<td>6</td>
<td>Wall surfaces are in good condition with minimal finish deterioration, wear or damage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMU; Gypsum board</td>
</tr>
<tr>
<td>Ceiling Finishes</td>
<td>18</td>
<td>Ceiling surfaces exhibit random finish deterioration and moderate wear and/or component damage; maintenance is required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lay-in tile; gypsum board</td>
</tr>
<tr>
<td>Doors- Hardware</td>
<td>18</td>
<td>Door surfaces exhibit random finish deterioration and moderate wear and/or component damage; hardware exhibits minor to moderate deterioration, maintenance is required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interior p-lam doors w HM frames; exterior HM doors/frames-worn; metal coiling door</td>
</tr>
</tbody>
</table>

Subtotal = 48

Service Systems

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevators</td>
<td>30</td>
<td>No elevator provided for multi-story building; extensive deterioration of car interiors is evident and controls malfunction frequent-refurbishment is required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Has lower level</td>
</tr>
<tr>
<td>Plumbing</td>
<td>8</td>
<td>Piping appears in generally good condition, with no recurring leak problems; fixtures are in good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copper, cast iron, steel and PVC piping</td>
</tr>
<tr>
<td>Category</td>
<td>Score</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>HVAC</td>
<td>24</td>
<td>HVAC system is generally adequate but older; minor to moderate deterioration of components is evident; maintenance/repair is required.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rooftop packaged units with DX cooling; limited airflow in some spaces</td>
</tr>
<tr>
<td>Electrical</td>
<td>8</td>
<td>Service and distribution capacity is adequate for current and future needs.</td>
</tr>
<tr>
<td>Service</td>
<td></td>
<td>1600amp 277/480v</td>
</tr>
<tr>
<td>Lights/Power</td>
<td>8</td>
<td>Contemporary lighting with good work area and instructional space illumination.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lay-in and ceiling mount fluorescent lights</td>
</tr>
<tr>
<td>Safety Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life/Safety</td>
<td>30</td>
<td>Building generally meets codes for vintage of construction.</td>
</tr>
<tr>
<td>Fire Safety</td>
<td>30</td>
<td>Fire alarm/pull stations but no sprinklers, illuminated exit signs and/or emergency lights.</td>
</tr>
<tr>
<td>Haphazard</td>
<td>7</td>
<td>Modifications appear to be well constructed and in compliance with codes; HVAC and electrical service fully support spaces.</td>
</tr>
<tr>
<td>Modification</td>
<td></td>
<td>None evident</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subtotal = 67</td>
</tr>
<tr>
<td>Quality Standards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maint. Quality</td>
<td>7</td>
<td>Facility appears to be well maintained.</td>
</tr>
<tr>
<td>Remaining Life</td>
<td>6</td>
<td>Life expectancy is greater than 15 years; building systems in good condition.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Should have 30+ yr. life expectancy</td>
</tr>
<tr>
<td>Appearance</td>
<td>18</td>
<td>Average building construction; exterior and/or interior spaces are of average attractiveness.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subtotal = 31</td>
</tr>
<tr>
<td>Energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall/Ceiling Insulation</td>
<td>6</td>
<td>Insulation generally meets current standards.</td>
</tr>
<tr>
<td>Glazing</td>
<td>18</td>
<td>Windows are double-glazed, but frames do not minimize conductivity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subtotal = 24</td>
</tr>
<tr>
<td>Total Score</td>
<td>274</td>
<td>(Score Range = 146 - 258)</td>
</tr>
<tr>
<td>Recommended Rating is:</td>
<td>Adequate</td>
<td></td>
</tr>
</tbody>
</table>
BUILDING CONDITION RATING

COLLEGE: Wenatchee Valley College
SITE: Wenatchee Campus
BLDG: 150HO1 Gray House
STATE UFI: A07871
1,658 SF
S
BUILT: 1930
REMODELED:
CONSTRUCTION TYPE: Light
CRV/SF: $185
CURRENT REPLACEMENT VALUE: $306,730
MGMT. CODE: Demolish

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>24</td>
<td>Minor to moderate cracking evident, but does not affect structural integrity; visible defects but not structural</td>
</tr>
<tr>
<td>Exterior Closure</td>
<td>24</td>
<td>Exterior walls, doors, windows, soffits and finishes are sound and weatherproof, but with moderate deterioration evident</td>
</tr>
<tr>
<td>Roofing</td>
<td>10</td>
<td>Membrane appears water-tight and flashings and penetrations are sound; drainage is positive</td>
</tr>
</tbody>
</table>

Subtotal = 58

<table>
<thead>
<tr>
<th>Secondary Systems</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor Finishes</td>
<td>30</td>
<td>A majority of floor surfaces exhibit extensive wear and deterioration and should no longer be maintained</td>
</tr>
<tr>
<td>Walls - Finishes</td>
<td>18</td>
<td>Wall surfaces exhibit random finish deterioration and moderate wear and/or damage; maintenance is required</td>
</tr>
<tr>
<td>Ceiling Finishes</td>
<td>18</td>
<td>Ceiling surfaces exhibit random finish deterioration and moderate wear and/or component damage; maintenance is required</td>
</tr>
<tr>
<td>Doors - Hardware</td>
<td>18</td>
<td>Door surfaces exhibit random finish deterioration and moderate wear and/or component damage; hardware exhibits minor to moderate deterioration, maintenance is required</td>
</tr>
</tbody>
</table>

Subtotal = 84

<table>
<thead>
<tr>
<th>Service Systems</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevators</td>
<td>6</td>
<td>One story building</td>
</tr>
<tr>
<td>Plumbing</td>
<td>24</td>
<td>Piping is older but serviceable; some recurring leaks are reported or some pipe deterioration is evident; fixtures show some wear but are serviceable; maintenance is required</td>
</tr>
</tbody>
</table>

Galvanized, cast iron and steel piping; porcelain fixtures
<table>
<thead>
<tr>
<th>Category</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVAC</td>
<td>8</td>
</tr>
<tr>
<td>HVAC equipment is in good condition, easily controlled, and serves all required spaces; ventilation is adequate</td>
<td></td>
</tr>
<tr>
<td>Electrical Service</td>
<td>8</td>
</tr>
<tr>
<td>Service and distribution capacity is adequate for current and future needs</td>
<td></td>
</tr>
<tr>
<td>Lights/Power</td>
<td>24</td>
</tr>
<tr>
<td>Generally adequate illumination but mostly older light fixtures</td>
<td></td>
</tr>
<tr>
<td>Safety Systems</td>
<td></td>
</tr>
<tr>
<td>Life/Safety</td>
<td>30</td>
</tr>
<tr>
<td>Building generally meets codes for vintage of construction</td>
<td></td>
</tr>
<tr>
<td>Fire Safety</td>
<td>50</td>
</tr>
<tr>
<td>No fire alarm of fire extinguishers; no illuminated exit signs</td>
<td></td>
</tr>
<tr>
<td>Haphazard Modification</td>
<td>21</td>
</tr>
<tr>
<td>Modifications are of average quality; HVAC and electrical service only partially support space</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal = 70

<table>
<thead>
<tr>
<th>Category</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality Standards</td>
<td></td>
</tr>
<tr>
<td>Maint. Quality</td>
<td>35</td>
</tr>
<tr>
<td>General deterioration is evident; lack of adequate maintenance is evident; impact is moderate to severe</td>
<td></td>
</tr>
<tr>
<td>Remaining Life</td>
<td>30</td>
</tr>
<tr>
<td>Life expectancy is less than 5 years; significant building system deterioration</td>
<td></td>
</tr>
<tr>
<td>77 year old single family house; good only as tear down</td>
<td></td>
</tr>
<tr>
<td>Appearance</td>
<td>18</td>
</tr>
<tr>
<td>Average building construction; exterior and/or interior spaces are of average attractiveness</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal = 101

<table>
<thead>
<tr>
<th>Category</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td></td>
</tr>
<tr>
<td>Wall/Ceiling Insulation</td>
<td>30</td>
</tr>
<tr>
<td>Building is not insulated</td>
<td></td>
</tr>
<tr>
<td>Glazing</td>
<td>18</td>
</tr>
<tr>
<td>Windows are double-glazed, but frames do not minimize conductivity</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal = 48

Total Score = 444 (Score Range = 146 - Previous Biennium 418)

Recommended Rating is: Needs Improvement Through Renovation
BUILDING CONDITION RATING

COLLEGE: Wenatchee Valley College
SITE: Wenatchee Campus
BLDG: 150MAC Music and Art Center
STATE UFI:
CONSTRUCTION TYPE: Heavy
CRV/SF: $369
BUILT: 2013
REMODELED:
PREDOMINANT BLDG. USE: Multi-Use
CURRENT REPLACEMENT VALUE:
MGMT. CODE: Manage with RMI Repair and Minor Works

Component Score Comment

Primary Systems

| Structure | 8 | No settlement or cracking evident; no abrupt vertical changes; bearing walls and roof structure are sound
| Structure | 8 | *Steel frame; brick*
| Exterior | 8 | Walls, doors, finishes and windows are weather-tight and well maintained with minimal wear
| Closure | 8 | *Brick; aluminum window walls; aluminum panels*
| Roofing | 10 | Membrane appears water-tight and flashings and penetrations are sound; drainage is positive
| Roofing | 10 | *TPO single-ply membrane*

Subtotal = 26

Secondary Systems

| Floor Finishes | 6 | Floor surfaces have a nice appearance and exhibit minimal random wear
| Walls - Finishes | 6 | Wall surfaces are in good condition with minimal finish deterioration, wear or damage
| Ceiling Finishes | 6 | Ceiling surfaces are in good condition with minimal finish deterioration, wear or component
| Doors- Hardware | 6 | Door finishes are in good condition and exhibit only minor random wear; door hardware is in good working order

Subtotal = 24

Service Systems

| Elevators | 6 | Elevators are appropriate and functional for use; car interiors have minimal deterioration and controls are in good condition
| Plumbing | 8 | Piping appears in generally good condition, with no recurring leak problems; fixtures are in good condition

HVAC 8 HVAC equipment is in good condition, easily controlled, and serves all required spaces; ventilation is adequate

Electrical Service 8 Service and distribution capacity is adequate for current and future needs

Lights/Power 8 Contemporary lighting with good work area and instructional space illumination

Subtotal = 38

Safety Systems

Life/Safety 10 Building appears to meet current codes

Fire Safety 10 Fire alarm present w locally monitored detection; sprinklers at minimum in high hazard areas; illuminated exit signs and/or emergency lights

Haphazard Modification 7 Modifications appear to be well constructed and in compliance with codes; HVAC and electrical service fully support spaces

New building

Subtotal = 27

Quality Standards

Maint. Quality 7 Facility appears to be well maintained

Remaining Life 6 Life expectancy is greater than 15 years; building systems in good condition

Very well constructed building; quality materials; RUL >45 yrs.

Appearance 6 Well constructed building; generally attractive exterior and interior spaces

Subtotal = 19

Energy

Wall/Ceiling Insulation 6 Insulation generally meets current standards

Glazing 6 Windows are double-glazed, with frames that minimize conductivity

Subtotal = 12

Total Score = 146 (Score Range = 146 - Previous Biennium

Recommended Rating is: Superior
BUILDING CONDITION RATING

COLLEGE: Wenatchee Valley College
SITE: Wenatchee Campus
BLDG: 150MNT
STATE UFI: A00152
SITE: Wenatchee Campus
CONSTRUCTION TYPE: Medium
CRV/SF: $316
CURRENT REPLACEMENT VALUE: $2,606,368
MGMT. CODE: Major Renovation - $100-$200/SF

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>24</td>
<td>Minor to moderate cracking evident, but does not affect structural integrity; visible defects but not structural</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMU; concrete; wood beam; seismic concerns</td>
</tr>
<tr>
<td>Exterior</td>
<td>24</td>
<td>Exterior walls, doors, windows, soffits and finishes are sound and weatherproof, but with moderate deterioration evident</td>
</tr>
<tr>
<td>Closure</td>
<td></td>
<td>CMU</td>
</tr>
<tr>
<td>Roofing</td>
<td>30</td>
<td>Minor to moderate deterioration of membrane and/or flashings is evident; maintenance is required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mineral surfaced cap sheet-repairs required</td>
</tr>
<tr>
<td>Subtotal</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Secondary Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor Finishes</td>
<td>18</td>
<td>Floor surfaces exhibit random moderate wear and random surface deterioration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carpet; concrete</td>
</tr>
<tr>
<td>Walls - Finishes</td>
<td>18</td>
<td>Wall surfaces exhibit random finish deterioration and moderate wear and/or damage; maintenance is required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMU and gypsum board</td>
</tr>
<tr>
<td>Ceiling Finishes</td>
<td>18</td>
<td>Ceiling surfaces exhibit random finish deterioration and moderate wear and/or component damage; maintenance is required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lay-in tile; wood roof deck; gypsum board</td>
</tr>
<tr>
<td>Doors- Hardware</td>
<td>18</td>
<td>Door surfaces exhibit random finish deterioration and moderate wear and/or component damage; hardware exhibits minor to moderate deterioration, maintenance is required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interior/exterior HM doors/frames; metal OH doors</td>
</tr>
<tr>
<td>Subtotal</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Service Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevators</td>
<td>6</td>
<td>One story building</td>
</tr>
<tr>
<td>Plumbing</td>
<td>24</td>
<td>Piping is older but serviceable; some recurring leaks are reported or some pipe deterioration is evident; fixtures show some wear but are serviceable; maintenance is required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Galvanized, cast iron, steel and copper piping; porcelain fixtures</td>
</tr>
</tbody>
</table>
SBCTC 2013 Facility Condition Survey

Wenatchee Valley College

HVAC 24 HVAC system is generally adequate but older; minor to moderate deterioration of components is evident; maintenance/repair is required
 Rooftop packaged units; unit heaters; welding ventilation

Electrical Service 8 Service and distribution capacity is adequate for current and future needs
 1200amp 208/120v

Lights/Power 24 Generally adequate illumination but mostly older light fixtures
 Lay-in, ceiling-mount and hanging fluorescent lighting

Subtotal = 86

Safety Systems
 Life/Safety 30 Building generally meets codes for vintage of construction

Fire Safety 30 Fire alarm/pull stations but no sprinklers, illuminated exit signs and/or emergency lights

Haphazard Modification 7 Modifications appear to be well constructed and in compliance with codes; HVAC and electrical service fully support spaces
 New welding shop remodel has been well done

Subtotal = 67

Quality Standards
 Maint. Quality 21 Routine maintenance is required; deferred maintenance is evident; impact is minor to

Remaining Life 30 Life expectancy is less than 5 years; significant building system deterioration
 Building has met life expectancy; should be replaced

Appearance 30 Average construction, but generally unattractive exterior and interior spaces

Subtotal = 81

Energy
 Wall/Ceiling Insulation 18 Insulation is present, but not to current standards

Glazing 18 Windows are double-glazed, but frames do not minimize conductivity

Subtotal = 36

Total Score = 420 (Score Range = 146 - 420) Previous Biennium = 420

Recommended Rating is: Needs Improvement Through Renovation
BUILDING CONDITION RATING

COLLEGE: Wenatchee Valley College
SITE: Omak Campus

BLDG: 150NAD North Administration Building
STATE UFI: A08937

5,600 SF BUILT: 1960 REMODELED: 1996
PREDOMINANT BLDG. USE: Student Services

CONSTRUCTION TYPE: Light
CRV/SF: $185
CURRENT REPLACEMENT VALUE: $1,036,000

MGMT. CODE: Manage with RMI Repair and Minor Works

Component	Score	Comment
Primary Systems
Structure | 8 | No settlement or cracking evident; no abrupt vertical changes; bearing walls and roof structure are sound
Wood frame; concrete foundation
Exterior | 8 | Walls, doors, finishes and windows are weather-tight and well maintained with minimal
Plaster exterior walls
Roofing | 10 | Membrane appears water-tight and flashings and penetrations are sound; drainage is positive
Metal roof-new in 1996

Subtotal = 26

Secondary Systems
Floor Finishes | 18 | Floor surfaces exhibit random moderate wear and random surface deterioration
Carpet-some wear; sheet vinyl; vinyl tile
Walls - Finishes | 6 | Wall surfaces are in good condition with minimal finish deterioration, wear or damage
Gypsum board; carpet wainscot; wood paneling
Ceiling Finishes | 6 | Ceiling surfaces are in good condition with minimal finish deterioration, wear or component
Gypsum board; lay-in tile; direct-adhered tile
Doors-Hardware | 6 | Door finishes are in good condition and exhibit only minor random wear; door hardware is in good working order
Interior wood doors/frames; exterior wood/HM doors and wood frames-some wear

Subtotal = 36

Service Systems
Elevators | 6 | Elevators are appropriate and functional for use; car interiors have minimal deterioration and controls are in good condition
ADA lift to basement
Plumbing | 8 | Piping appears in generally good condition, with no recurring leak problems; fixtures are in good condition
Copper, steel, cast iron and galvanized piping; porcelain fixtures
<table>
<thead>
<tr>
<th>Area</th>
<th>Score</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVAC</td>
<td>8</td>
<td>HVAC equipment is in good condition, easily controlled, and serves all required spaces; ventilation is adequate. Rooftop packaged HVAC w electric heat-new in 2000; forced air furnace with A/C</td>
</tr>
<tr>
<td>Electrical Service</td>
<td>8</td>
<td>Service and distribution capacity is adequate for current and future needs. 225amp 120/208v new service and distribution in 1996</td>
</tr>
<tr>
<td>Lights/Power</td>
<td>8</td>
<td>Contemporary lighting with good work area and instructional space illumination. Lay-in and ceiling-mount fluorescent lighting</td>
</tr>
<tr>
<td>Safety Systems</td>
<td>30</td>
<td>Building generally meets codes for vintage of construction</td>
</tr>
<tr>
<td>Fire Safety</td>
<td>30</td>
<td>Fire alarm/pull stations but no sprinklers, illuminated exit signs and/or emergency lights</td>
</tr>
<tr>
<td>Haphazard</td>
<td>7</td>
<td>Modifications appear to be well constructed and in compliance with codes; HVAC and electrical service fully support spaces. Remodel was well thought out and well done</td>
</tr>
<tr>
<td>Quality Standards</td>
<td>7</td>
<td>Facility appears to be well maintained</td>
</tr>
<tr>
<td>Remaining Life</td>
<td>18</td>
<td>Life expectancy is between 5 and 15 years; moderate building system deterioration. Structurally sound but older building; should last at least 20 yrs.</td>
</tr>
<tr>
<td>Appearance</td>
<td>18</td>
<td>Average building construction; exterior and/or interior spaces are of average attractiveness. Exterior is older but serviceable</td>
</tr>
<tr>
<td>Energy</td>
<td>18</td>
<td>Insulation is present, but not to current standards</td>
</tr>
<tr>
<td>Glazing</td>
<td>18</td>
<td>Windows are double-glazed, but frames do not minimize conductivity</td>
</tr>
<tr>
<td>Total Score</td>
<td>246</td>
<td>Score Range = 146 - 288 Previous Biennium 234 Recommended Rating is: Adequate</td>
</tr>
</tbody>
</table>
BUILDING CONDITION RATING

COLLEGE: Wenatchee Valley College
SITe: Omak Campus
BLDG: 150NCL
SITE UFI: A01911
STATE: Wenatchee Valley College
BUILT: 1960
REMODELED:
PREDOMINANT BLDG. USE: Mixed Use
CONSTRUCTION TYPE: Light
CRV/SF: $316
CURRENT REPLACEMENT VALUE: $2,795,968
MGMT. CODE: Manage with RMI Repair and Minor Works

Component Score Comment

Primary Systems

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Comment</th>
</tr>
</thead>
</table>
| Structure | 8 | No settlement or cracking evident; no abrupt vertical changes; bearing walls and roof structure are sound

Concrete; wood framing

| Exterior | 8 | Walls, doors, finishes and windows are weather-tight and well maintained with minimal |
| Closure | | New EIFS exterior in 2000; wood soffits |
| Roofing | 10 | Membrane appears water-tight and flashings and penetrations are sound; drainage is positive

New TPO membrane installed in 2011 to overlay defective membrane installed in 2011; warranty work

Subtotal = 26

Secondary Systems

| Floor Finishes | 18 | Floor surfaces exhibit random moderate wear and random surface deterioration

Carpet; epoxy flooring; vinyl tile; ceramic tile

| Walls - Finishes | 6 | Wall surfaces are in good condition with minimal finish deterioration, wear or damage

Gypsum board; ceramic tile

| Ceiling Finishes | 18 | Ceiling surfaces exhibit random finish deterioration and moderate wear and/or component damage; maintenance is required

Lay-in tiles-staining on many tiles from roof leaks

| Doors- Hardware | 6 | Door finishes are in good condition and exhibit only minor random wear; door hardware is in good working order

Interior wood doors w HM frames; exterior aluminum and HM doors w aluminum/HM frames

Subtotal = 48

Service Systems

| Elevators | 6 | One story building |

| Plumbing | 8 | Piping appears in generally good condition, with no recurring leak problems; fixtures are in good condition

Copper, steel, galvanized and cast iron piping; porcelain fixtures
HVAC

<table>
<thead>
<tr>
<th>8</th>
<th>HVAC equipment is in good condition, easily controlled, and serves all required spaces; ventilation is adequate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rooftop packaged HVAC units with electric heat-new in 2000</td>
</tr>
</tbody>
</table>

Electrical Service

<table>
<thead>
<tr>
<th>8</th>
<th>Service and distribution capacity is adequate for current and future needs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>600amp 120/208v</td>
</tr>
</tbody>
</table>

Lights/Power

<table>
<thead>
<tr>
<th>8</th>
<th>Contemporary lighting with good work area and instructional space illumination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lay-in and recessed can fluorescent lighting</td>
</tr>
</tbody>
</table>

Safety Systems

Life/Safety

<table>
<thead>
<tr>
<th>10</th>
<th>Building appears to meet current codes</th>
</tr>
</thead>
</table>

Fire Safety

<table>
<thead>
<tr>
<th>30</th>
<th>Fire alarm/pull stations but no sprinklers, illuminated exit signs and/or emergency lights</th>
</tr>
</thead>
</table>

Haphazard Modification

<table>
<thead>
<tr>
<th>7</th>
<th>Modifications appear to be well constructed and in compliance with codes; HVAC and electrical service fully support spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None evident</td>
</tr>
</tbody>
</table>

Subtotal = 47

Quality Standards

Maint. Quality

<table>
<thead>
<tr>
<th>7</th>
<th>Facility appears to be well maintained</th>
</tr>
</thead>
</table>

Remaining Life

<table>
<thead>
<tr>
<th>6</th>
<th>Life expectancy is greater than 15 years; building systems in good condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Structurally sound building; new science lab addition built in 2001</td>
</tr>
</tbody>
</table>

Appearance

<table>
<thead>
<tr>
<th>6</th>
<th>Well constructed building; generally attractive exterior and interior spaces</th>
</tr>
</thead>
</table>

Subtotal = 19

Energy

Wall/Ceiling Insulation

<table>
<thead>
<tr>
<th>6</th>
<th>Insulation generally meets current standards</th>
</tr>
</thead>
</table>

Glazing

| 18 | Windows are double-glazed, but frames do not minimize conductivity |

Subtotal = 24

Total Score = 202

Score Range = 146 - Previous Biennium 190

Recommended Rating is: Adequate
BUILDING CONDITION RATING

COLLEGE: Wenatchee Valley College
SITE: Omak Campus
BLDG.: 150NFH
STATE UFI: A07184
7,131 SF
BUILT: 1985
REMODELED:
PREDOMINANT BLDG. USE: General Classroom
CONSTRUCTION TYPE: Medium
CRV/SF: $301
CURRENT REPLACEMENT VALUE: $2,146,431
MGMT. CODE: Manage with RMI Repair and Minor Works

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>8</td>
<td>No settlement or cracking evident; no abrupt vertical changes; bearing walls and roof structure are sound</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMU; wood framing</td>
</tr>
<tr>
<td>Exterior Closure</td>
<td>8</td>
<td>Walls, doors, finishes and windows are weather-tight and well maintained with minimal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stucco (dryvit)-some minor cracks need patching; wood soffits</td>
</tr>
<tr>
<td>Roofing</td>
<td>10</td>
<td>Membrane appears water-tight and flashings and penetrations are sound; drainage is positive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>New TPO membrane installed in 2011 to overlay defective membrane installed in 2011; warranty work</td>
</tr>
<tr>
<td>Subtotal =</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Secondary Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor Finishes</td>
<td>6</td>
<td>Floor surfaces have a nice appearance and exhibit minimal random wear</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carpet-some wear; vinyl tile; exposed aggregate concrete; ceramic tile</td>
</tr>
<tr>
<td>Walls - Finishes</td>
<td>6</td>
<td>Wall surfaces are in good condition with minimal finish deterioration, wear or damage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gypsum board throughout; good condition</td>
</tr>
<tr>
<td>Ceiling Finishes</td>
<td>6</td>
<td>Ceiling surfaces are in good condition with minimal finish deterioration, wear or component</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lay-in tile; gypsum board-some stains from roof leaks; wood</td>
</tr>
<tr>
<td>Doors- Hardware</td>
<td>6</td>
<td>Door finishes are in good condition and exhibit only minor random wear; door hardware is in good working order</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interior wood doors w HM frames; exterior aluminum/wood doors and aluminum/HM frames</td>
</tr>
<tr>
<td>Subtotal =</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Service Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevators</td>
<td>6</td>
<td>One story building</td>
</tr>
<tr>
<td>Plumbing</td>
<td>8</td>
<td>Piping appears in generally good condition, with no recurring leak problems; fixtures are in good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copper, steel and cast iron piping; porcelain fixtures</td>
</tr>
</tbody>
</table>
HVAC 8 HVAC equipment is in good condition, easily controlled, and serves all required spaces; ventilation is adequate

 Rooftop packaged HVAC units with electric heat-replaced in 2000

Electrical Service 8 Service and distribution capacity is adequate for current and future needs

 800amp 240/120v

Lights/Power 8 Contemporary lighting with good work area and instructional space illumination

 Lay-in and recessed can fluorescent lighting

Subtotal = 38

Safety Systems

 Life/Safety 10 Building appears to meet current codes

 Fire Safety 30 Fire alarm/pull stations but no sprinklers, illuminated exit signs and/or emergency lights

 Haphazard Modification 7 Modifications appear to be well constructed and in compliance with codes; HVAC and electrical service fully support spaces

 No modifications evident

Subtotal = 47

Quality Standards

 Maint. Quality 7 Facility appears to be well maintained

 Remaining Life 6 Life expectancy is greater than 15 years; building systems in good condition

 Structurally sound building; should have 30 years of remaining life

 Appearance 6 Well constructed building; generally attractive exterior and interior spaces

Subtotal = 19

Energy

 Wall/Ceiling Insulation 6 Insulation generally meets current standards

 Glazing 18 Windows are double-glazed, but frames do not minimize conductivity

Subtotal = 24

Total Score = 178
(Score Range = 146 - 178)
Previous Biennium 178

Recommended Rating is: Adequate
BUILDING CONDITION RATING

COLLEGE: Wenatchee Valley College
SITE: Omak Campus
BLDG: 150NSC5
STATE UFI: 5,587 SF
BUILT:
REMODELED:
PREDOMINANT BLDG. USE: Administration
CONSTRUCTION TYPE: Light
CRV/SF: $185
CURRENT REPLACEMENT VALUE: $1,033,595
MGMT. CODE: Small Renovation, Tenant Improvement - $60-$80/SF

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Systems</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Structure | 24 | Minor to moderate cracking evident, but does not affect structural integrity; visible defects but not structural:
Wood frame; concrete foundation |
| Exterior Closure| 24 | Exterior walls, doors, windows, soffits and finishes are sound and weatherproof, but with moderate deterioration evident:
Stucco |
| Roofing | 30 | Minor to moderate deterioration of membrane and/or flashings is evident; maintenance is:
Single-ply hypalon membrane |
| **Subtotal** | **78**| |
| **Secondary Systems** | | |
| Floor Finishes | 18 | Floor surfaces exhibit random moderate wear and random surface deterioration:
Carpet; sheet vinyl |
| Walls Finishes | 6 | Wall surfaces are in good condition with minimal finish deterioration, wear or damage:
Gypsum board; wood paneling |
| Ceiling Finishes| 18 | Ceiling surfaces exhibit random finish deterioration and moderate wear and/or component damage; maintenance is required:
Lay-ins and direct-adhered tiles |
| Doors-Hardware | 18 | Door surfaces exhibit random finish deterioration and moderate wear and/or component damage; hardware exhibits minor to moderate deterioration, maintenance is required:
Interior wood doors/frames; exterior HM doors/wood frames |
| **Subtotal** | **60**| |
| **Service Systems** | | |
| Elevators | 30 | No elevator provided for multi-story building; extensive deterioration of car interiors is evident and controls malfunction frequent-refurbishment is required:
1 story w occupied basement |
| Plumbing | 24 | Piping is older but serviceable; some recurring leaks are reported or some pipe deterioration is evident; fixtures show some wear but are serviceable; maintenance is required:
Galvanized, copper and cast iron piping; porcelain fixtures |
<table>
<thead>
<tr>
<th>Category</th>
<th>Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVAC</td>
<td>110</td>
</tr>
<tr>
<td>Electrical Service</td>
<td>101</td>
</tr>
<tr>
<td>Lights/Power</td>
<td>57</td>
</tr>
<tr>
<td>Safety Systems</td>
<td></td>
</tr>
<tr>
<td>Life/Safety</td>
<td>30</td>
</tr>
<tr>
<td>Fire Safety</td>
<td>50</td>
</tr>
<tr>
<td>Structural</td>
<td>21</td>
</tr>
<tr>
<td>Quality Standards</td>
<td></td>
</tr>
<tr>
<td>Maint. Quality</td>
<td>21</td>
</tr>
<tr>
<td>Remaining Life</td>
<td>18</td>
</tr>
<tr>
<td>Appearance</td>
<td>18</td>
</tr>
<tr>
<td>Energy</td>
<td></td>
</tr>
<tr>
<td>Wall/Ceiling Insulation</td>
<td>18</td>
</tr>
<tr>
<td>Glazing</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Score = 430

Recommended Rating is: Needs Improvement Through Renovation
BUILDING CONDITION RATING

COLLEGE: Wenatchee Valley College
SITE: Omak Campus

BLDG: 150NSC6
FACILITIES OFFICE AND SHOP
STATE UFI:

BUILT: 1992
REMODELED:

CONSTRUCTION TYPE: Light
CRV/SF: $195
CURRENT REPLACEMENT VALUE: $201,630

MGMT. CODE: Manage with RMI Repair and Minor Works

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>8</td>
<td>No settlement or cracking evident; no abrupt vertical changes; bearing walls and roof structure are sound</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wood frame; concrete slab</td>
</tr>
<tr>
<td>Exterior Closure</td>
<td>8</td>
<td>Walls, doors, finishes and windows are weather-tight and well maintained with minimal</td>
</tr>
<tr>
<td>Roofing</td>
<td>10</td>
<td>Membrane appears water-tight and flashings and penetrations are sound; drainage is positive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Metal roof</td>
</tr>
<tr>
<td>Subtotal</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Secondary Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor Finishes</td>
<td>18</td>
<td>Floor surfaces exhibit random moderate wear and random surface deterioration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concrete; carpet; sheet vinyl</td>
</tr>
<tr>
<td>Walls - Finishes</td>
<td>6</td>
<td>Wall surfaces are in good condition with minimal finish deterioration, wear or damage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gypsum board</td>
</tr>
<tr>
<td>Ceiling Finishes</td>
<td>6</td>
<td>Ceiling surfaces are in good condition with minimal finish deterioration, wear or component</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gypsum board</td>
</tr>
<tr>
<td>Doors- Hardware</td>
<td>6</td>
<td>Door finishes are in good condition and exhibit only minor random wear; door hardware is in good working order</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interior/exterior HM doors/wood frames</td>
</tr>
<tr>
<td>Subtotal</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Service Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevators</td>
<td>6</td>
<td>One story building</td>
</tr>
<tr>
<td>Plumbing</td>
<td>8</td>
<td>Piping appears in generally good condition, with no recurring leak problems; fixtures are in good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copper, steel, cast iron and ABS piping; porcelain fixtures</td>
</tr>
</tbody>
</table>
HVAC 8 HVAC equipment is in good condition, easily controlled, and serves all required spaces; ventilation is adequate
 Electric wall furnace and window A/C

Electrical Service 8 Service and distribution capacity is adequate for current and future needs
 200amp 120/208v

Lights/Power 8 Contemporary lighting with good work area and instructional space illumination
 Ceiling mount fluorescent lighting

Subtotal = 38

Safety Systems
Life/Safety 30 Building generally meets codes for vintage of construction

Fire Safety 50 No fire alarm of fire extinguishers; no illuminated exit signs

Haphazard Modification 21 Modifications are of average quality; HVAC and electrical service only partially support space
 Minor modifications; average workmanship

Subtotal = 101

Quality Standards
Maint. Quality 7 Facility appears to be well maintained

Remaining Life 6 Life expectancy is greater than 15 years; building systems in good condition
 Newer metal building; should have RUL of 20 yrs.

Appearance 18 Average building construction; exterior and/or interior spaces are of average attractiveness
 Average looking interior and exterior

Subtotal = 31

Energy
Wall/Ceiling Insulation 18 Insulation is present, but not to current standards

Glazing 18 Windows are double-glazed, but frames do not minimize conductivity

Subtotal = 36

Total Score = 268 (Score Range = 146 - 256) Previous Biennium 256
Recommended Rating is: Adequate
BUILDING CONDITION RATING

COLLEGE: Wenatchee Valley College
SITE: Omak Campus
BLDG: 150NSC7 Omak College Foundation Office
STATE UFI: 839 SF
CONSTRUCTION TYPE: Light
RETIRED:
PRIMARILY USED FOR: Administration
CURRENT REPLACEMENT VALUE: $155,215
MGMT. CODE: Demolish

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Systems</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Structure | 24 | Minor to moderate cracking evident, but does not affect structural integrity; visible defects but not structural
Wood frame; concrete foundation |
| Exterior Closure | 24 | Exterior walls, doors, windows, soffits and finishes are sound and weatherproof, but with moderate deterioration evident
Horizontal wood siding; older and checked |
| Roofing | 30 | Minor to moderate deterioration of membrane and/or flashings is evident; maintenance is
Metal roof panels over asphalt shingles |
| **Subtotal =** | **78** | |
| **Secondary Systems** | | |
| Floor Finishes | 18 | Floor surfaces exhibit random moderate wear and random surface deterioration
Carpet; sheet vinyl |
| Walls - Finishes | 6 | Wall surfaces are in good condition with minimal finish deterioration, wear or damage
Gypsum board |
| Ceiling Finishes | 18 | Ceiling surfaces exhibit random finish deterioration and moderate wear and/or component damage; maintenance is required
Gypsum board |
| Doors-Hardware | 18 | Door surfaces exhibit random finish deterioration and moderate wear and/or component damage; hardware exhibits minor to moderate deterioration, maintenance is required
Interior wood doors/frames; exterior wood/HM doors/wood frames |
| **Subtotal =** | **60** | |
| **Service Systems** | | |
| Elevators | 18 | Elevator car interiors exhibit wear and controls experience moderate malfunction; maintenance is required
1 story w partial basement |
| Plumbing | 24 | Piping is older but serviceable; some recurring leaks are reported or some pipe deterioration is evident; fixtures show some wear but are serviceable; maintenance is required
Galvanized and cast iron piping; porcelain fixtures |

86
HVAC 24 HVAC system is generally adequate but older; minor to moderate deterioration of components is evident; maintenance/repair is required
 Electric wall heaters w fans
Electrical Service 24 Service capacity is adequate, but there may be distribution panel capacity issues
 100amp 208/120v
Lights/Power 24 Generally adequate illumination but mostly older light fixtures

Subtotal = 114

Safety Systems
Life/Safety 50 Building does not meet minimum life/safety requirements
Fire Safety 50 No fire alarm of fire extinguishers; no illuminated exit signs
Haphazard Modification 35 Modifications are not well thought out or constructed; HVAC and electrical service are
 Interior poorly modified by previous owners

Subtotal = 135

Quality Standards
Maint. Quality 21 Routine maintenance is required; deferred maintenance is evident; impact is minor to
Remaining Life 30 Life expectancy is less than 5 years; significant building system deterioration
 Most systems are older; not cost-effective to renovate; RUL <10 yrs.
Appearance 30 Average construction, but generally unattractive exterior and interior spaces

Subtotal = 81

Energy
Wall/Ceiling Insulation 18 Insulation is present, but not to current standards
Glazing 18 Windows are double-glazed, but frames do not minimize conductivity

Subtotal = 36

Total Score = 504 (Score Range = 146 - Previous Biennium 492
Recommended Rating is: Replace or Renovate
BUILDING CONDITION RATING

COLLEGE: Wenatchee Valley College
SITE: Omak Campus

BLDG: 150NSC8
W.S.U. College Bound Office

STATE UFI: 882 SF
BUILT:
REMODELED:
PREDOMINANT BLDG. USE: Administration

CONSTRUCTION TYPE: Light
CRV/SF: $185
CURRENT REPLACEMENT VALUE: $163,170

MGMT. CODE: Demolish

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>24</td>
<td>Minor to moderate cracking evident, but does not affect structural integrity; visible defects but not structural</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wood frame; concrete foundation</td>
</tr>
<tr>
<td>Exterior Closure</td>
<td>24</td>
<td>Exterior walls, doors, windows, soffits and finishes are sound and weatherproof, but with moderate deterioration evident</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical wood board and batten siding</td>
</tr>
<tr>
<td>Roofing</td>
<td>30</td>
<td>Minor to moderate deterioration of membrane and/or flashings is evident; maintenance is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Metal roof panels</td>
</tr>
<tr>
<td>Subtotal =</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Secondary Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor Finishes</td>
<td>18</td>
<td>Floor surfaces exhibit random moderate wear and random surface deterioration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carpet; sheet vinyl</td>
</tr>
<tr>
<td>Walls - Finishes</td>
<td>6</td>
<td>Wall surfaces are in good condition with minimal finish deterioration, wear or damage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gypsum board; worn melamine and wood paneling</td>
</tr>
<tr>
<td>Ceiling Finishes</td>
<td>6</td>
<td>Ceiling surfaces are in good condition with minimal finish deterioration, wear or component finishes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lay-in and direct-adhered tile</td>
</tr>
<tr>
<td>Doors- Hardware</td>
<td>18</td>
<td>Door surfaces exhibit random finish deterioration and moderate wear and/or component damage; hardware exhibits minor to moderate deterioration, maintenance is required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interior wood doors/frames; exterior HM doors/wood frames</td>
</tr>
<tr>
<td>Subtotal =</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Service Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevators</td>
<td>6</td>
<td>One story building</td>
</tr>
<tr>
<td>Plumbing</td>
<td>24</td>
<td>Piping is older but serviceable; some recurring leaks are reported or some pipe deterioration is evident; fixtures show some wear but are serviceable; maintenance is required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Galvanized and cast iron piping; porcelain fixtures</td>
</tr>
</tbody>
</table>
HVAC 24 HVAC system is generally adequate but older; minor to moderate deterioration of components is evident; maintenance/repair is required
 Electric wall heaters w fans; window A/C
Electrical Service 8 Service and distribution capacity is adequate for current and future needs
 200amp 208/120v
Lights/Power 8 Contemporary lighting with good work area and instructional space illumination
 Lay-in fluorescent lights

Safety Systems
Life/Safety 50 Building does not meet minimum life/safety requirements
Fire Safety 50 No fire alarm of fire extinguishers; no illuminated exit signs
Haphazard Modification 35 Modifications are not well thought out or constructed; HVAC and electrical service are
 Interior poorly modified by previous owners

Subtotal = 135

Quality Standards
Maint. Quality 21 Routine maintenance is required; deferred maintenance is evident; impact is minor to
Remaining Life 30 Life expectancy is less than 5 years; significant building system deterioration
 Most systems are older; not cost-effective to renovate; RUL <10 yrs.
Appearance 30 Average construction, but generally unattractive exterior and interior spaces

Subtotal = 81

Energy
Wall/Ceiling Insulation 18 Insulation is present, but not to current standards
Glazing 18 Windows are double-glazed, but frames do not minimize conductivity

Subtotal = 36

Total Score = 448
(Score Range = 146 - Previous Biennium 448
Recommended Rating is: Needs Improvement Through Renovation
BUILDING CONDITION RATING

College: Wenatchee Valley College
Site: Omak Campus
Bldg: 150NSC9 New Classroom Building
State UFI: 3,194 SF
Built:
Remodeled:
Predominant Bldg. Use: Classroom
Construction Type: Light
CRV/SF: $185
Current Replacement Value: $590,890
Mgmt. Code: Demolish

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Systems</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Structure | 24 | Minor to moderate cracking evident, but does not affect structural integrity; visible defects but not structural
Wood frame; enclosed porch is sagging; possible structural issues |
| Exterior Closure | 24 | Exterior walls, doors, windows, soffits and finishes are sound and weatherproof, but with moderate deterioration evident
Wood siding |
| Roofing | 30 | Minor to moderate deterioration of membrane and/or flashings is evident; maintenance is Asphalt shingles |
| **Subtotal** | = | 78 |
| **Secondary Systems** | | |
| Floor Finishes | 18 | Floor surfaces exhibit random moderate wear and random surface deterioration
Carpet; sheet vinyl |
| Walls - Finishes | 6 | Wall surfaces are in good condition with minimal finish deterioration, wear or damage
Gypsum board |
| Ceiling Finishes | 18 | Ceiling surfaces exhibit random finish deterioration and moderate wear and/or component damage; maintenance is required
Gypsum board; direct-adhered tile |
| Doors- Hardware | 18 | Door surfaces exhibit random finish deterioration and moderate wear and/or component damage; hardware exhibits minor to moderate deterioration, maintenance is required
Interior wood doors/frames; exterior HM/wood doors/wood frames |
| **Subtotal** | = | 60 |
| **Service Systems** | | |
| Elevators | 30 | No elevator provided for multi-story building; extensive deterioration of car interiors is evident and controls malfunction frequently-refurbishment is required
2 story w basement; no elevator |
| Plumbing | 24 | Piping is older but serviceable; some recurring leaks are reported or some pipe deterioration is evident; fixtures show some wear but are serviceable; maintenance is required
Copper; cast iron and ABS piping |
HVAC 24 HVAC system is generally adequate but older; minor to moderate deterioration of components is evident; maintenance/repair is required
 Electric baseboards; window A/C; electric force air furnace w cooling coil

Electrical Service 8 Service and distribution capacity is adequate for current and future needs
 200amp 208/120v

Lights/Power 24 Generally adequate illumination but mostly older light fixtures

 \[\text{Subtotal} = 110 \]

Safety Systems
Life/Safety 50 Building does not meet minimum life/safety requirements

Fire Safety 50 No fire alarm of fire extinguishers; no illuminated exit signs

Haphazard Modification 35 Modifications are not well thought out or constructed; HVAC and electrical service are
 \[\text{Interior poorly modified by previous owners} \]

 \[\text{Subtotal} = 135 \]

Quality Standards
Maint. Quality 21 Routine maintenance is required; deferred maintenance is evident; impact is minor to Average maintenance

Remaining Life 30 Life expectancy is less than 5 years; significant building system deterioration
 \[\text{Most systems are older; not cost-effective to renovate; RUL <10 yrs.} \]

Appearance 30 Average construction, but generally unattractive exterior and interior spaces

 \[\text{Subtotal} = 81 \]

Energy
Wall/Ceiling Insulation 18 Insulation is present, but not to current standards

Glazing 18 Windows are double-glazed, but frames do not minimize conductivity

 \[\text{Subtotal} = 36 \]

\[\text{Total Score} = 500 \]
\[\text{(Score Range} = 146 - 488) \]

Recommended Rating is: Replace or Renovate
BUILDING CONDITION RATING

COLLEGE: Wenatchee Valley College
SITE: Wenatchee Campus
BLDG: 150RFG Refrigeration
STATE UFI: A05917
SITE: Wenatchee Campus
STATE UFI: A05917
CONSTRUCTION TYPE: Medium
CRV/SF: $316
CURRENT REPLACEMENT VALUE: $1,385,344
MGMT. CODE: Replace - $150-$350/SF

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Systems</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Structure | 24 | Minor to moderate cracking evident, but does not affect structural integrity; visible defects but not structural
CMU; wood beams; seismic concerns |
| Exterior Closure | 24 | Exterior walls, doors, windows, soffits and finishes are sound and weatherproof, but with moderate deterioration evident
Dryvit panels-larger cracks in several panels |
| Roofing | 50 | Membrane leaks and significant deterioration is evident; replacement is warranted
Single-ply membrane-deteriorated; funded for replacement; not done - repairs only |
| **Subtotal** | = 98 | |
| **Secondary Systems** | | |
| Floor Finishes | 6 | Floor surfaces have a nice appearance and exhibit minimal random wear
Concrete floor throughout |
| Walls - Finishes | 6 | Wall surfaces are in good condition with minimal finish deterioration, wear or damage
Unfinished CMU walls |
| Ceiling Finishes | 6 | Ceiling surfaces are in good condition with minimal finish deterioration, wear or component
T&G wood ceiling-underside of roof deck |
| Doors- Hardware | 18 | Door surfaces exhibit random finish deterioration and moderate wear and/or component damage; hardware exhibits minor to moderate deterioration, maintenance is required
Exterior/interior HM doors/frames; metal OH door |
| **Subtotal** | = 36 | |
| **Service Systems** | | |
| Elevators | 6 | One story building |
| Plumbing | 24 | Piping is older but serviceable; some recurring leaks are reported or some pipe deterioration is evident; fixtures show some wear but are serviceable; maintenance is required
Galvanized, copper and cast iron piping; porcelain fixtures |
HVAC 8 HVAC equipment is in good condition, easily controlled, and serves all required spaces; ventilation is adequate
 Rooftop packaged A/C units

Electrical Service 8 Service and distribution capacity is adequate for current and future needs
 400amp 208/120v

Lights/Power 24 Generally adequate illumination but mostly older light fixtures
 Ceiling-mount fluorescent fixtures; inadequate lighting in some areas

Subtotal = 70

Safety Systems
Life/Safety 30 Building generally meets codes for vintage of construction

Fire Safety 30 Fire alarm/pull stations but no sprinklers, illuminated exit signs and/or emergency lights

Haphazard Modification 7 Modifications appear to be well constructed and in compliance with codes; HVAC and electrical service fully support spaces
 None evident

Subtotal = 67

Quality Standards
Maint. Quality 21 Routine maintenance is required; deferred maintenance is evident; impact is minor to

Remaining Life 30 Life expectancy is less than 5 years; significant building system deterioration
 Older building that is inadequate in size and poor design for instructional use

Appearance 30 Average construction, but generally unattractive exterior and interior spaces

Subtotal = 81

Energy
Wall/Ceiling Insulation 30 Building is not insulated
 None

Glazing 6 Building has no windows

Subtotal = 36

Total Score = 388 (Score Range = 146 - 388)

Previous Biennium 388

Recommended Rating is: Needs Improvement Through Renovation
BUILDING CONDITION RATING

COLLEGE: Wenatchee Valley College
SITE: Wenatchee Campus
BLDG: 150SXT
STATE UFI: A06871
SITE: Wenatchee Campus
STATE UFI: A06871
26,631 SF
BUILT: 1967
REMODELED: 1999
PREDOMINANT BLDG. USE: Computer Lab.
CONSTRUCTION TYPE: Medium
CRV/SF: $301
CURRENT REPLACEMENT VALUE: $8,015,931
MGMT. CODE: Manage with RMI Repair and Minor Works

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>8</td>
<td>No settlement or cracking evident; no abrupt vertical changes; bearing walls and roof structure are sound</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMU and concrete; wood roof deck; laminated wood beams</td>
</tr>
<tr>
<td>Exterior Closure</td>
<td>24</td>
<td>Exterior walls, doors, windows, soffits and finishes are sound and weatherproof, but with moderate deterioration evident</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMU with Dryvit overlay-random exterior cracking</td>
</tr>
<tr>
<td>Roofing</td>
<td>10</td>
<td>Membrane appears water-tight and flashings and penetrations are sound; drainage is positive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single-ply hypalon roof-new in 2004</td>
</tr>
<tr>
<td>Subtotal =</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Secondary Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor Finishes</td>
<td>18</td>
<td>Floor surfaces exhibit random moderate wear and random surface deterioration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carpet; vinyl tile; ceramic tile</td>
</tr>
<tr>
<td>Walls - Finishes</td>
<td>6</td>
<td>Wall surfaces are in good condition with minimal finish deterioration, wear or damage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMU and gypsum board</td>
</tr>
<tr>
<td>Ceiling Finishes</td>
<td>18</td>
<td>Ceiling surfaces exhibit random finish deterioration and moderate wear and/or component damage; maintenance is required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lay-in and direct adhered tile; new ceilings in 80% of building in 99; drywall</td>
</tr>
<tr>
<td>Doors- Hardware</td>
<td>18</td>
<td>Door surfaces exhibit random finish deterioration and moderate wear and/or component damage; hardware exhibits minor to moderate deterioration, maintenance is required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interior wood doors w HM frames; exterior aluminum doors/frames</td>
</tr>
<tr>
<td>Subtotal =</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Service Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevators</td>
<td>6</td>
<td>One story building</td>
</tr>
<tr>
<td>Plumbing</td>
<td>8</td>
<td>Piping appears in generally good condition, with no recurring leak problems; fixtures are in good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copper, galvanized, steel and cast iron piping' porcelain fixtures</td>
</tr>
</tbody>
</table>
HVAC 8 HVAC equipment is in good condition, easily controlled, and serves all required spaces; ventilation is adequate
4 new air handlers in 1999; hot water boiler and chiller in central plant

Electrical Service 8 Service and distribution capacity is adequate for current and future needs
600amp 277/480v

Lights/Power 8 Contemporary lighting with good work area and instructional space illumination
Lay-in and ceiling-mount fluorescent lighting; halogen spotlights

Subtotal = 38

Safety Systems
Life/Safety 10 Building appears to meet current codes

Fire Safety 30 Fire alarm/pull stations but no sprinklers, illuminated exit signs and/or emergency lights

Haphazard Modification 7 Modifications appear to be well constructed and in compliance with codes; HVAC and electrical service fully support spaces
None evident; 1999 remodel was well constructed

Subtotal = 47

Quality Standards
Maint. Quality 35 General deterioration is evident; lack of adequate maintenance is evident; impact is moderate to severe

Remaining Life 18 Life expectancy is between 5 and 15 years; moderate building system deterioration
Interior remodel in 1999; may not be cost-effective for long-term use

Appearance 18 Average building construction; exterior and/or interior spaces are of average attractiveness

Subtotal = 71

Energy
Wall/Ceiling Insulation 18 Insulation is present, but not to current standards

Glazing 18 Windows are double-glazed, but frames do not minimize conductivity

Subtotal = 36

Total Score = 294 (Score Range = 146 - 254) Previous Biennium 254
Recommended Rating is: Fair, But Needs Improvement Through Additional Maintenance
BUILDING CONDITION RATING

COLLEGE: "Wenatchee Valley College
BLDG: 150VTC Van Tassell
SITE: Wenatchee Campus
STATE UFI: A00894
CONSTRUCTION TYPE: Medium
CRV/SF: $313
CURRENT REPLACEMENT VALUE: $7,712,320

Component Score Comment

Primary Systems
Structure 8 No settlement or cracking evident; no abrupt vertical changes; bearing walls and roof structure are sound
CMU; concrete; wood roof deck; wood beams
Exterior Closure 24 Exterior walls, doors, windows, soffits and finishes are sound and weatherproof, but with moderate deterioration evident
CMU and cement masonry panels-random cracking; aluminum glazed window walls
Roofing 10 Membrane appears water-tight and flashings and penetrations are sound; drainage is positive
New single-ply hypalon roof in 2003

Subtotal = 42

Secondary Systems
Floor Finishes 6 Floor surfaces have a nice appearance and exhibit minimal random wear
Carpet; vinyl tile; ceramic tile; quarry tile
Walls - Finishes 6 Wall surfaces are in good condition with minimal finish deterioration, wear or damage
CMU and gypsum board; ceramic tile
Ceiling Finishes 6 Ceiling surfaces are in good condition with minimal finish deterioration, wear or component
Lay-in tile; acoustical tile; wood roof deck; gypsum board
Doors- Hardware 6 Door finishes are in good condition and exhibit only minor random wear; door hardware is in good working order
Newer interior p-lam and wood doors/frames; exterior aluminum doors/frames

Subtotal = 24

Service Systems
Elevators 6 One story building

Plumbing 24 Piping is older but serviceable; some recurring leaks are reported or some pipe deterioration is evident; fixtures show some wear but are serviceable; maintenance is required
Copper, cast iron, steel and galvanized piping; porcelain fixtures
<table>
<thead>
<tr>
<th>Category</th>
<th>Score</th>
<th>Details</th>
</tr>
</thead>
</table>
| **HVAC** | 8 | HVAC equipment is in good condition, easily controlled, and serves all required spaces; ventilation is adequate.
 Rooftop packaged HVAC units-new in 98 and 04; window units; wall radiators |
| **Electrical Service** | 8 | Service and distribution capacity is adequate for current and future needs.
 1000amp 277/480v |
| **Lights/Power** | 8 | Contemporary lighting with good work area and instructional space illumination.
 Ceiling mount, lay-in and hanging circular fluorescent lighting |
| **Safety Systems** | | **Subtotal = 54** |
| Life/Safety | 10 | Building appears to meet current codes |
| **Fire Safety** | 30 | Fire alarm/pull stations but no sprinklers, illuminated exit signs and/or emergency lights |
| **Haphazard Modification** | 7 | Modifications appear to be well constructed and in compliance with codes; HVAC and electrical service fully support spaces.
 1998 remodel was well constructed; 04 kitchen/dining remodel very nice |
| **Quality Standards** | | **Subtotal = 47** |
| Maint. Quality | 7 | Facility appears to be well maintained |
| Remaining Life | 6 | Life expectancy is greater than 15 years; building systems in good condition.
 Interior was extensively remodeled in 1998 and 2004 |
| Appearance | 18 | Average building construction; exterior and/or interior spaces are of average attractiveness.
 Very average and utilitarian exterior |
| **Energy** | | **Subtotal = 31** |
| Wall/Ceiling Insulation | 18 | Insulation is present, but not to current standards |
| Glazing | 18 | Windows are double-glazed, but frames do not minimize conductivity |
| **Total Score** | 234 | *(Score Range = 146 - 288)*
 Previous Biennium = 234
 Recommended Rating is: Adequate* |
BUILDING CONDITION RATING

COLLEGE: Wenatchee Valley College

SITE: Wenatchee Campus

BLDG: 150WEL Wells
STATE UFI: A04977

36,918 SF BUILT: 1952 REMODELED: 1996 PREDOMINANT BLDG. USE: Mixed Use

CONSTRUCTION TYPE: Medium CRV/SF: $316 CURRENT REPLACEMENT VALUE: $11,666,088

MGMT. CODE: Replace - $150-$350/SF

Component Score Comment

Primary Systems

Structure 24 Minor to moderate cracking evident, but does not affect structural integrity; visible defects but not structural
Concrete; brick; wood framing; some seismic concerns

Exterior 40 Significant deterioration of exterior closure systems; leaking and air infiltration are evident
Concrete and brick - exterior deterioration in an number of areas on all wings

Roofing 50 Membrane leaks and significant deterioration is evident; replacement is warranted
Hypalon single-ply roof; Wing 5 is badly deteriorated

Subtotal = 114

Secondary Systems

Floor Finishes 18 Floor surfaces exhibit random moderate wear and random surface deterioration
Vinyl tile; ceramic tile; carpet

Walls - Finishes 18 Wall surfaces exhibit random finish deterioration and moderate wear and/or damage;
maintenance is required
CMU; brick; gypsum board; ceramic tile

Ceiling - Finishes 18 Ceiling surfaces exhibit random finish deterioration and moderate wear and/or component damage; maintenance is required
Lay-in tile; direct adhered tile; gypsum board

Doors- Hardware 18 Door surfaces exhibit random finish deterioration and moderate wear and/or component damage; hardware exhibits minor to moderate deterioration, maintenance is required
Interior wood doors w HM frames; exterior metal doors/frames and aluminum doors/frames

Subtotal = 72

Service Systems

Elevators 6 One story building

Plumbing 40 Piping exhibits general deterioration, including constricted flow, and extensive reported leaking; fixtures exhibit extensive wear, and are old and generally deteriorated
Galvanized; steel and cast iron piping; some copper; porcelain fixtures

98
HVAC 24 HVAC system is generally adequate but older; minor to moderate deterioration of components is evident; maintenance/repair is required

Chiller in Batjer; hot water boilers; rooftop packaged A/C units; some replaced in 1996

Electrical Service 24 Service capacity is adequate, but there may be distribution panel capacity issues

1200amp 208/120v

Lights/Power 24 Generally adequate illumination but mostly older light fixtures

Ceiling mount, hanging and lay-in fluorescent lighting; some inadequate lighting

Subtotal = 118

Safety Systems
Life/Safety 30 Building generally meets codes for vintage of construction

Fire Safety 30 Fire alarm/pull stations but no sprinklers, illuminated exit signs and/or emergency lights

Haphazard Modification 35 Modifications are not well thought out or constructed; HVAC and electrical service are

Modifications not well thought out; somewhat haphazard

Subtotal = 95

Quality Standards
Maint. Quality 35 General deterioration is evident; lack of adequate maintenance is evident; impact is moderate to severe

Remaining Life 30 Life expectancy is less than 5 years; significant building system deterioration

Three wings partially remodeled in recent years, but building is almost 60 years old

Appearance 30 Average construction, but generally unattractive exterior and interior spaces

Subtotal = 95

Energy
Wall/Ceiling Insulation 30 Building is not insulated

Glazing 30 Windows have single-glazing

Mix of old single and double glazed windows

Subtotal = 60

Total Score = 554 (Score Range = 146 - 554) Previous Biennium 554

Recommended Rating is: Replace or Renovate
BUILDING CONDITION RATING

COLLEGE: Wenatchee Valley College
SITE: Wenatchee Campus
BLDG: 150WELA
SITE: Wells-Arts Addition
STATE UFI: A04977
STATE: Wenatchee Campus
3,605 SF
BUILT: 2003
REMODELED:
CONSTRUCTION TYPE: Medium
CRV/SF: $301
CURRENT REPLACEMENT VALUE: $1,085,105
MGMT. CODE: Manage with RMI Repair and Minor Works

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>8</td>
<td>No settlement or cracking evident; no abrupt vertical changes; bearing walls and roof structure are sound</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Metal framing; concrete slab</td>
</tr>
<tr>
<td>Exterior</td>
<td>8</td>
<td>Walls, doors, finishes and windows are weather-tight and well maintained with minimal</td>
</tr>
<tr>
<td>Closure</td>
<td></td>
<td>Brick; metal wall panels</td>
</tr>
<tr>
<td>Roofing</td>
<td>10</td>
<td>Membrane appears water-tight and flashings and penetrations are sound; drainage is positive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypalon single-ply roof</td>
</tr>
<tr>
<td>Subtotal</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Secondary Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor Finishes</td>
<td>6</td>
<td>Floor surfaces have a nice appearance and exhibit minimal random wear</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concrete; vinyl tile</td>
</tr>
<tr>
<td>Walls - Finishes</td>
<td>6</td>
<td>Wall surfaces are in good condition with minimal finish deterioration, wear or damage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gypsum board</td>
</tr>
<tr>
<td>Ceiling Finishes</td>
<td>18</td>
<td>Ceiling surfaces exhibit random finish deterioration and moderate wear and/or component damage; maintenance is required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lay-in ceiling tile; metal panels</td>
</tr>
<tr>
<td>Doors-Hardware</td>
<td>6</td>
<td>Door finishes are in good condition and exhibit only minor random wear; door hardware is in good working order</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interior wood laminate and HM doors/frames; exterior aluminum doors/frames</td>
</tr>
<tr>
<td>Subtotal</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Service Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevators</td>
<td>6</td>
<td>One story building</td>
</tr>
<tr>
<td>Plumbing</td>
<td>8</td>
<td>Piping appears in generally good condition, with no recurring leak problems; fixtures are in good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copper and cast iron piping; ss sinks</td>
</tr>
<tr>
<td>Category</td>
<td>Score</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>HVAC</td>
<td>8</td>
<td>HVAC equipment is in good condition, easily controlled, and serves all required spaces; ventilation is adequate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rooftop packaged HVAC unit;</td>
</tr>
<tr>
<td>Electrical</td>
<td>8</td>
<td>Service and distribution capacity is adequate for current and future needs</td>
</tr>
<tr>
<td>Service</td>
<td></td>
<td>400amp 208/120v</td>
</tr>
<tr>
<td>Lights/Power</td>
<td>8</td>
<td>Contemporary lighting with good work area and instructional space illumination</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lay-in and ceiling mount fluorescent lights</td>
</tr>
<tr>
<td></td>
<td>Subtotal = 38</td>
<td></td>
</tr>
<tr>
<td>Life/Safety</td>
<td>10</td>
<td>Building appears to meet current codes</td>
</tr>
<tr>
<td>Fire Safety</td>
<td>30</td>
<td>Fire alarm/pull stations but no sprinklers, illuminated exit signs and/or emergency lights</td>
</tr>
<tr>
<td>Haphazard</td>
<td>7</td>
<td>Modifications appear to be well constructed and in compliance with codes; HVAC and electrical service fully support spaces</td>
</tr>
<tr>
<td>Modification</td>
<td></td>
<td>None evident</td>
</tr>
<tr>
<td></td>
<td>Subtotal = 47</td>
<td></td>
</tr>
<tr>
<td>Quality Standards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maint. Quality</td>
<td>21</td>
<td>Routine maintenance is required; deferred maintenance is evident; impact is minor to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clay dust very evident around ceiling diffusers</td>
</tr>
<tr>
<td>Remaining Life</td>
<td>6</td>
<td>Life expectancy is greater than 15 years; building systems in good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Should have 30+ yr. Life</td>
</tr>
<tr>
<td>Appearance</td>
<td>18</td>
<td>Average building construction; exterior and/or interior spaces are of average attractiveness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Very utilitarian exterior</td>
</tr>
<tr>
<td></td>
<td>Subtotal = 45</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall/Ceiling Insulation</td>
<td>6</td>
<td>Insulation generally meets current standards</td>
</tr>
<tr>
<td>Glazing</td>
<td>18</td>
<td>Windows are double-glazed, but frames do not minimize conductivity</td>
</tr>
<tr>
<td></td>
<td>Subtotal = 24</td>
<td></td>
</tr>
</tbody>
</table>

Total Score = 216
(Score Range = 146 - 288)
Previous Biennium = 204
Recommended Rating is: Adequate
BUILDING CONDITION RATING

College: Wenatchee Valley College
Site: Wenatchee Campus

Building: 150WTI
State UFI: A06617
Year Built: 2007
Remodeled:
Predominant Bldg. Use: Multi-Use
Construction Type: Heavy
CRV/SF: $369
Current Replacement Value: $30,258,000

Management Code: Manage with RMI Repair and Minor Works

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Systems</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Structure | 8 | No settlement or cracking evident; no abrupt vertical changes; bearing walls and roof structure are sound
Steel frame; brick; concrete columns |
| Exterior Closure | 8 | Walls, doors, finishes and windows are weather-tight and well maintained with minimal wear |
Brick; aluminum window walls; aluminum panels; sandstone block |
| Roofing | 10 | Membrane appears water-tight and flashings and penetrations are sound; drainage is positive |
TPO single-ply membrane; skylight |
| **Subtotal = 26** | | |
| **Secondary Systems** | | |
| Floor Finishes | 6 | Floor surfaces have a nice appearance and exhibit minimal random wear
Carpet; vinyl tile; ceramic tile |
| Walls - Finishes | 6 | Wall surfaces are in good condition with minimal finish deterioration, wear or damage
Sandstone block; gypsum board; ceramic tile; masonite wainscot; concrete columns |
| Ceiling Finishes | 6 | Ceiling surfaces are in good condition with minimal finish deterioration, wear or component仙女 |
Lay-in tile; gypsum board; perforated wood tiles |
| Doors-Hardware | 6 | Door finishes are in good condition and exhibit only minor random wear; door hardware is in good working order
Interior wood doors w HM frames; exterior aluminum doors/frames |
| **Subtotal = 24** | | |
| **Service Systems** | | |
| Elevators | 6 | Elevators are appropriate and functional for use; car interiors have minimal deterioration and controls are in good condition
4 stop - 2 elevators |
| Plumbing | 8 | Piping appears in generally good condition, with no recurring leak problems; fixtures are in good condition
Copper, cast iron, steel and ABS piping; porcelain fixtures-water saving |
HVAC 8 HVAC equipment is in good condition, easily controlled, and serves all required spaces; ventilation is adequate
 Chillers; AHUs w electric duct heaters and VAVs; small DX units

Electrical Service 8 Service and distribution capacity is adequate for current and future needs
 1600amp 208/120v; 4000amp 480/277v; 275 kva generator

Lights/Power 8 Contemporary lighting with good work area and instructional space illumination
 Lay-in, hanging pendant, recessed can and hanging strip fluorescent lighting

 Subtotal = 38

Safety Systems
 Life/Safety 10 Building appears to meet current codes

Fire Safety 10 Fire alarm present w locally monitored detection; sprinklers at minimum in high hazard areas;
 illuminated exit signs and/or emergency lights

Haphazard Modification 7 Modifications appear to be well constructed and in compliance with codes; HVAC and
 electrical service fully support spaces

 Subtotal = 27

Quality Standards
 Maint. Quality 7 Facility appears to be well maintained

Remaining Life 6 Life expectancy is greater than 15 years; building systems in good condition
 Very well constructed building; quality materials; RUL >45 yrs.

Appearance 6 Well constructed building; generally attractive exterior and interior spaces

 Subtotal = 19

Energy
 Wall/Ceiling Insulation 6 Insulation generally meets current standards

Glazing 6 Windows are double-glazed, with frames that minimize conductivity

 Subtotal = 12

Total Score = 146 (Score Range = 146 - Previous Biennium 146

Recommended Rating is: Superior
SITE CONDITION

A similar analysis was conducted for the college site by evaluating and rating eight site characteristics. These ratings also translated into a site condition score that ranges between 36 and 175. As with the facility condition analysis, the lower the score the better the overall condition.

The site condition rating reports for each campus are provided on the following pages.
SITE CONDITION RATING

COLLEGE: Wenatchee Valley College
SITE: Main Campus
SURVEY DATE: 6/13

<table>
<thead>
<tr>
<th>Component</th>
<th>Score/Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>6 Site is adequate for future growth</td>
</tr>
</tbody>
</table>
| Traffic Flow | 18 Traffic flow has some inefficiencies, but is adequate
Local streets through residential area |
| Parking Needs | 18 Parking is adequate for present needs; circulation is inadequate |
| Security | 20 Site lighting is inadequate and there are no emergency phones
Additional site/security lighting needed |
| Drainage | 15 Ponding is observable at some buildings or between buildings; a number of buildings have no downspouts; inadequate catch basins
Ponding of water common between buildings |
| Paving | 4 Paved pedestrian walkways provide circulation between buildings, and parking lots are |
| Site | 6 Landscaping appears adequate, but maintenance needs improvement
Grass areas are too large; consume too much water |
| Signage | 2 Building numbers and/or names are identified; parking and ADA signage exists; rooms are numbered and exits properly marked |

Total Score: 89
(Score Range = 36 - 175)
PREVIOUS BIENN IUM 77
SITE CONDITION RATING

COLLEGE: Wenatchee Valley College
SITE: Omak Campus
SURVEY DATE: 6/13

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
<th>Comment</th>
</tr>
</thead>
</table>
| Location | 30 | Site is inadequate and fails to meet current demand. Lack of future expansion capability; threatened by incompatible adjacent development
 | | *Site completely landlocked by residential development* |
| Traffic Flow | 18 | Traffic flow has some inefficiencies, but is adequate
 | | *All traffic flow is adjacent to site; potential minor hazards* |
| Parking Needs | 30 | No expansion potential for parking; circulation is not efficient
 | | *Heavy reliance on street parking* |
| Security | 12 | Site lighting is adequate, but there are no security phones
 | | *Little site security other than lighting* | |
| Drainage | 15 | Ponding is observable at some buildings or between buildings; a number of buildings have no downspouts; inadequate catch basins |
| Paving | 4 | Paved pedestrian walkways provide circulation between buildings, and parking lots are |
| Site | 2 | Site is landscaped and appears well-maintained
 | | *Well maintained but too much grass* |
| Signage | 6 | Building and/or room signage are minimal; emergency exits are properly marked
 | | *Rooms adequately identified; average building signage* |

Total Score: 117
(Score Range = 36 - 175)
PREVIOUS BIENNium: 117
WEIGHTED AVERAGE AND COMPARISON

Based on the criteria scores collected during this survey, the weighted average condition score for the facilities at Wenatchee Valley College is 283. This score indicates that the average facility condition at the college needs improvement through additional maintenance.

The State Board has a long term goal of improving the condition of all college facilities, bringing the condition scores up to “adequate” condition levels. Historical data indicates that this trend is occurring. After this goal is achieved, the average weighted condition scores at each campus would likely exceed the “adequate” rating. The following table shows all college weighted average scores for comparison.

BUILDING CONDITION RATING SUMMARY - ALL COLLEGES

<table>
<thead>
<tr>
<th>COLLEGE</th>
<th>2013 WEIGHTED COLLEGE SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>010</td>
<td>Peninsula College</td>
</tr>
<tr>
<td>020</td>
<td>Grays Harbor College</td>
</tr>
<tr>
<td>030</td>
<td>Olympic College</td>
</tr>
<tr>
<td>040</td>
<td>Skagit Valley College</td>
</tr>
<tr>
<td>050</td>
<td>Everett Community College</td>
</tr>
<tr>
<td>062</td>
<td>Seattle Central Community College</td>
</tr>
<tr>
<td>063</td>
<td>North Seattle Community College</td>
</tr>
<tr>
<td>064</td>
<td>South Seattle Community College</td>
</tr>
<tr>
<td>065</td>
<td>Seattle Vocational Institute</td>
</tr>
<tr>
<td>070</td>
<td>Shoreline Community College</td>
</tr>
<tr>
<td>080</td>
<td>Bellevue College</td>
</tr>
<tr>
<td>089</td>
<td>SBCTC</td>
</tr>
<tr>
<td>090</td>
<td>Highline Community College</td>
</tr>
<tr>
<td>100</td>
<td>Green River Community College</td>
</tr>
<tr>
<td>111</td>
<td>Pierce College at Fort Steilacoom</td>
</tr>
<tr>
<td>112</td>
<td>Pierce College at Puyallup</td>
</tr>
<tr>
<td>121</td>
<td>Centralia College</td>
</tr>
<tr>
<td>130</td>
<td>Lower Columbia College</td>
</tr>
<tr>
<td>140</td>
<td>Clark College</td>
</tr>
<tr>
<td>150</td>
<td>Wenatchee Valley College</td>
</tr>
<tr>
<td>160</td>
<td>Yakima Valley Community College</td>
</tr>
<tr>
<td>171</td>
<td>Spokane Community College</td>
</tr>
<tr>
<td>172</td>
<td>Spokane Falls Community College</td>
</tr>
<tr>
<td>180</td>
<td>Big Bend Community College</td>
</tr>
<tr>
<td>190</td>
<td>Columbia Basin College</td>
</tr>
<tr>
<td>200</td>
<td>Walla Walla Community College</td>
</tr>
<tr>
<td>210</td>
<td>Whatcom Community College</td>
</tr>
<tr>
<td>Code</td>
<td>College</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>220</td>
<td>Tacoma Community College</td>
</tr>
<tr>
<td>230</td>
<td>Edmonds Community College</td>
</tr>
<tr>
<td>240</td>
<td>South Puget Sound Community College</td>
</tr>
<tr>
<td>250</td>
<td>Bellingham Technical College</td>
</tr>
<tr>
<td>260</td>
<td>Lake Washington Institute of Technology</td>
</tr>
<tr>
<td>270</td>
<td>Renton Technical College</td>
</tr>
<tr>
<td>280</td>
<td>Bates Technical College</td>
</tr>
<tr>
<td>290</td>
<td>Clover Park Technical College</td>
</tr>
<tr>
<td>300</td>
<td>Cascadia Community College</td>
</tr>
</tbody>
</table>

Average Weighted Score

254

146 - 175 = Superior
176 - 275 = Adequate
276 - 350 = Needs Improvement By Additional Maintenance
351 - 475 = Needs Improvement By Renovation
>475 = Replace or Renovate
SBCTC 2013 Facility Condition Survey

Wenatchee Valley College

Bldg. 150HO1
Gray House

Bldg. 150MNT
Industrial Technologies

Bldg. 150NAD
Omak - North Administration Building

Bldg. 150NCL
Omak - North Classroom

Bldg. 150NFH
Omak - Friendship Hall

Bldg. 150FAC
Facilities and Operations
Bldg. 150NSC5
Omak – Student Resource Center

Bldg. 150NSC6
Omak – Facilities Office and Shop

Bldg. 150NSC7
Omak – College Foundation Office

Bldg. 150NSC8
Omak – WSU College Bound

Bldg. 150NSC9
Omak – New Classroom Building

Bldg. 150RFG
Refrigeration
Bldg. 150WTI
Wenatchi Hall

Bldg. 150MAC
Music & Art Center
APPENDICES

- Appendix A
 - Deficiency Scoring Method

- Appendix B
 - Building Condition Ratings

- Appendix C
 - Capital Repair Request Validation Criteria
APPENDIX A

DEFICIENCY SCORING METHOD

In most facility maintenance environments funding available for facility maintenance and repair never matches need in terms of identified requirements. This is no less true for capital repair funding for the state community and technical colleges. Therefore, a key component of a sound maintenance planning and programming system must be the ability to prioritize capital repair deficiencies for system-wide programming over a multi-year period. The key objective in conducting the bi-annual condition assessment is to validate and prioritize deficiencies identified by the colleges so that capital repairs can be accomplished in a timely manner, and potentially more costly repairs can be forestalled. For this reason, the SBCTC determined that a method of assigning a relative severity score to each capital repair deficiency was necessary to allow equitable allocation of funding for capital repairs among all the colleges. It was determined that such a scoring system needed to be “transparent” to the facility condition assessment personnel, so that it could be applied in a consistent manner to establish deficiency severity. It was further determined that such a system needed to have a range of severity scores that would allow some level of differentiation among scores.

At the request of the SBCTC, a deficiency scoring system was developed by the SBCTC’s consultants in 1995, and updated in 1999. This system is designed to allow the person validating a deficiency to assign a relative severity score to each deficiency in an objective fashion, based on a clearly defined set of severity criteria. The primary concern in designing the scoring system was insuring the timely accomplishment of repair work so that current deficiencies do not degrade to the point where more costly corrective action is required. A collateral concern was to reduce or eliminate any identified health and safety risks.

The core of the scoring process that was developed consists of:

- A reasonable set of definitions that are easily subscribed to by all members of the assessment management and execution team;
- A manageable number of priority levels, each of which is clearly distinct from the other;
- A clear implication of the potential impacts if corrective action is not taken.
Field prioritization of deficiencies is accomplished using a two-step scoring process. This process involves, first, determining whether a deficiency is Immediate or Deferrable and, second, prioritizing the criticality or deferability using a priority ranking system.

IMMEDIATE VS DEFERRABLE

A deficiency is categorized as **Immediate** if it must be corrected within a short period of time after being identified. An “Immediate” deficiency should meet the following criteria:

1. If the deficiency is not corrected within a short time, a significant health and/or safety risk will develop.
2. If the deficiency is not corrected within a short time, a significant increase in the cost of corrective action could result.
3. If the deficiency is not corrected within a short time, the deficiency could significantly degrade to the point where an entire building system could be impacted.

All deficiencies degrade over time if they are not corrected, and often the cost of deferring corrective action will increase. **However, the magnitude of the degradation or cost increase is the key consideration in determining if a deficiency is “Immediate”**. For example, a built-up roof with significant blisters and felts that are beginning to separate is deteriorating. However, if that deterioration is in its early stages, and interior leaks are not yet present, roof replacement/repair can be legitimately deferred. If, however, the roof has been deteriorating for some time, and leaks have become so common that they have begun to cause deterioration in other building systems, the roof should be classified as “Immediate”. The cost of replacing that roof will not increase. However, the total cost of repairs associated with the leakage caused by that roof will in all likelihood increase significantly. Not only will the roof continue to degrade, but there will also be associated roof insulation, roof deck, or interior structural degradation, as well as possible damage to mechanical or electrical system components.

A deficiency is categorized as **Deferrable** if corrective action can be postponed to the 2017-2019 biennium or later. Since deficiencies can degrade over time, their associated corrective costs can also increase. Therefore, a “Deferrable” deficiency should meet the following criteria:
1. The degree of degradation over the deferrable time frame will be at a relatively constant rate, or at least will not increase significantly from year to year.

2. The degree of corrective cost increase over the deferrable time frame will be at a relatively constant rate, or at least will not increase significantly from year to year.

3. Potential health/safety impacts will be minor, and will not increase as to severity over the deferrable time frame.

4. There will be little, if any, mission impact over the deferrable time frame.

The point at which noticeable changes in the character of a deficiency can be projected with respect to the above considerations is the end point of the deferability time frame, because at that point the character of a deficiency can be assumed to change from “Deferrable” to “Immediate”.

A deficiency categorized as **Immediate** should be considered for submission to the SBCTC as a project request in the 2015-2017 capital budget. A deficiency categorized as **Deferrable** could be postponed for corrective action until the 2017-2019 biennium. Furthermore, a deficiency categorized as **Future** could be postponed until after the 2017–2019 biennium if it is anticipated to degrade very slowly and does not restrict the use of the facility.

PRIORITIZING DEFICIENCIES

Once a deficiency is categorized as Immediate, Deferrable or Future, the next step in the scoring process is to assign a priority designating relative importance for planning and programming purposes. A six-level prioritizing system was developed for assigning a priority to a deficiency:

1. **Health/Safety**
 This designation is the highest priority level assigned to a deficiency. It designates a deficiency as having potentially adverse health and/or safety impacts on building occupants or users if the deficiency is not corrected within the designated time frame.

2. **Building Function (Use)**
 This priority designates a deficiency as having a potentially adverse impact on the ability to fully utilize a facility if the deficiency is not corrected within the recommended time-frame.
3. **System Use** This priority designates a deficiency as having a potentially adverse impact on a building system’s ability to operate properly if the deficiency is not corrected within the recommended time frame.

4. **Repair/Repl. Cost** This priority designates that the repair or replacement cost associated with correcting a deficiency will escalate sharply after the time period recommended for correction of the deficiency. In all probability this will occur because degradation of associated components or systems will occur.

5. **Operating Cost** This priority designates that the operating cost associated with correcting a deficiency will escalate sharply after the time period recommended for correction the deficiency.

6. **Quality of Use** This is the lowest level priority assigned to a deficiency. It designates that the deficiency should be corrected as part of a “prudent owner” strategy within the time recommended.

For programming purposes, each priority level is assumed to be relatively more important than the next. It is also assumed that more than one of the priority choices can apply to establishing the overall priority for a deficiency. It was determined that up to two selections could be made from the priority choices for each deficiency. Each of the selections would be assigned a percentage value, with the total of the selections equaling 100%. To avoid having to consider all possible combinations of numbers from 1 to 100 for a priority choice, it was determined that a finite set of numbers would be used for scoring. For a single priority choice a score of 100 would always be assigned. For two priority choices combinations of 50/50, 70/30, 60/40 or 75/25 would typically be used.

SEVERITY SCORING

A severity score is calculated for each capital repair deficiency by formula that was programmed into the database management system used for the survey. The formula calculates a severity score based on a numerical value assigned to each of the DEFERRABILITY and PRIORITY choices.

The numerical values assigned to the Deferability choices are:

- Immediate 4
- Deferrable 2.5
- Future 1
The numerical values assigned to the **Priority** choices are:

- Health/Safety 25
- Facility Use 20
- System Use 15
- Increased Repair/Replacement Cost 12
- Increased Operating Cost 10
- Quality of Use 5

A deficiency score is calculated by multiplying the value of the selected deferability choice by the value of the selected priority choice. Where more than one priority choice is applied to a deficiency, the percentage of each priority applied is multiplied by the corresponding priority value. The results are added together, and the sum is multiplied by the value of the deferability choice.

For example, for a deficiency with an assigned deferability of “Deferred” and a 100% assigned priority of “System Use” the deficiency score is **38**. This score is calculated as:

Step 1 \(1 \times 15 = 15\), where 15 is the value of “System Use,” and 1 is 100%, since only one priority choice was selected.

Step 2 \(15 \times 2.5 = 38\) rounded, where 15 is the value of “System Use,” and 2.5 is the value of the deferability choice of “Deferred.”

If more than one priority choice is assigned to a deficiency, say 30% “System Use” and 70% “Increased Repair/Replacement Cost”, with an assigned deferability category “Deferred”, the score would be calculated as:

Step 1 \((0.3 \times 15) + (0.7 \times 12) = 12.9\), where 15 is the value of “System Use,” 12 is the value of “Increased Repair/Replacement Cost,” 0.3 is the 30% assigned to “System Use,” and 0.7 is the 70% assigned to “Increased Repair/Replacement Cost.”

Step 2 \(-12.9 \times 2.5 = 32\) rounded, where 2.5 is the value of a deferability category “Deferred.”
The possible calculated severity score ranges for a deficiency are shown below:

<table>
<thead>
<tr>
<th></th>
<th>Immediate</th>
<th>Deferred</th>
<th>Future</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible severity score range:</td>
<td>20-100</td>
<td>13-63</td>
<td>5-25</td>
</tr>
</tbody>
</table>

This demonstrates that a deficiency with a deferability category of “Deferred” could have a severity score that is higher than a deficiency with a deferability category of “Immediate”. All deficiencies are ranked using the severity score.
As part of the facility condition survey update, a building condition analysis was also conducted for each building on a campus. The objective of this analysis is to provide an overall comparative assessment of the condition and adequacy each building on a campus, and a method of comparing facilities among campuses.

The condition analysis was performed by rating the condition or adequacy of 20 building system and operating characteristics. Three evaluation criteria were developed for each characteristic to provide a relative ranking of the standard of good, average or poor. A rating of 1, 3 or 5 was assigned to each of the three evaluation criteria for each characteristic. Each facility is rated by applying the evaluation criteria to each of the 20 separate building systems and operating characteristics. If a characteristic does not apply, (e.g. a one story building that does not have an elevator or a building that does not have a plumbing system) a rating of 0 is assigned to that element. Each characteristic has an associated weighting score that is multiplied by the rating assigned to that characteristic to generate a score for that characteristic. The scores for all 20 characteristics are totaled to provide an overall rating score for a facility.

The scoring range for a facility, based on the weighted scores for all 20 characteristics, multiplied by the rating for each characteristic, is between 146 and 730. The lower the score, the better the relative overall condition of a facility. It is intended that these ratings will serve as a baseline benchmark of overall condition, which can be used to measure improvements or deterioration in facility condition over time.

In addition to the building condition analysis, a site condition analysis was also conducted of each campus. Eight site characteristics were selected for the analysis, and three evaluation criteria were developed for each characteristic to provide a relative ranking of good, average or poor. A rating of 1, 3 or 5 was also assigned to each of the three evaluation criteria for the site characteristics. Each site was rated by applying the evaluation criteria to each of the eight characteristics. Each site characteristic also had an associated weighting score that was multiplied by the rating assigned to that characteristic to generate a score for that characteristic. The scores for all eight characteristics were totaled to provide an overall rating score for a site.

The evaluation criteria associated with the building and site ratings are presented on the following pages.
<table>
<thead>
<tr>
<th>FACILITY EVALUATION CRITERIA</th>
<th>RTNG</th>
<th>WGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary System</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>1. Structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No signs of settlement or cracking, no abrupt vertical changes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columns, bearing walls and roof structure appears sound/free of defects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some cracking evident but does not affect structural integrity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible defects apparent but are non-structural</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible settlement and potential structural failure; potential safety hazard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural defects apparent in superstructure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Exterior Closure</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Weatherproof, tight, well-maintained exterior walls, doors, windows/finishes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sound and weatherproof but with some deterioration evident</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant deterioration, leaking and air infiltration apparent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Roofing</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Flashing and penetrations appear sound and membrane appears watertight; drainage is positive and there are overflow scuppers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some deterioration is evident in membrane and flashings; maintenance is needed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaking and deterioration is to point where new roof is required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary Systems</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>4. Floor Finishes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nice appearance, smooth transitions, level subfloors, no cracks/separating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some wear and minor imperfections are evident; beginning deterioration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extensive deterioration and unevenness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Walls-Finishes</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Maintainable surfaces in good condition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aging surfaces but sound; some maintenance is required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surfaces are deteriorated and require resurfacing or rebuilding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Ceiling Finishes</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Maintainable surfaces in good condition; good alignment and appearance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some wear and tear and minor deterioration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deteriorated, stained or sagging; inappropriate for occupancy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Doors-Hardware</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Appropriate hardware, closers, panic devices; in good working order</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functional but dated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inoperable, deteriorating and outdated; non-secure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service Systems</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>8. Elevators/Conveying</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appropriate and functional for occupancy and use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevators provided but functionality is inadequate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No elevator access for upper floors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Plumbing</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Fixtures and piping appear to be in good condition; no evidence of leaks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixtures are functional but dated; some leaks; maintenance required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extensive pipe leaks; deteriorated fixtures; inadequate fixtures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. HVAC</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Equipment in good condition; easily controlled; serves all required spaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All necessary spaces are adequately ventilated; A/C provided</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System generally adequate; some deterioration; needs balancing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offices areas have A/C; hazardous areas are ventilated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inadequate capacity, zoning and distribution; equipment deteriorating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No A/C in office areas; no ventilation in hazardous areas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Elect. Service and Distribution</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Adequate service and distribution capacity for current/future needs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service capacity meets current needs but inadequate for future</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loads exceed current capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>FACILITY EVALUATION CRITERIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lighting/Power</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Safety Standards</td>
<td>13. Life/Safety</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>14. Fire Safety</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>15. Haphazard Modification</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Quality Standards</td>
<td>16. Quality of Maintenance</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>17. Remaining Life</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>18. Appearance</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Energy Conservation</td>
<td>19. Walls/Ceilings</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>20. Glazing</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

730 Max points

146-175 = Superior
176-275 = Adequate
276-350 = Needs Improvement/Additional Maintenance
351-475 = Needs Improvement/Renovation
476-730 = Replace or Renovate
<table>
<thead>
<tr>
<th>Campus Site</th>
<th>RTNG</th>
<th>WGHT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Location</td>
<td>1</td>
<td>6</td>
<td>Site is adequate for future growth</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>Site is reasonably sized for foreseeable future</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>Site is inadequate, fails to meet current demand. Lack of future expansion capability; threatened by incompatible adjacent development</td>
</tr>
<tr>
<td>B. Traffic Flow</td>
<td>1</td>
<td>6</td>
<td>Traffic flow poses no apparent safety hazards and is efficient</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>Traffic flow has some inefficiencies but is adequate</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>Traffic flow is inefficient and unsafe</td>
</tr>
<tr>
<td>C. Parking Needs</td>
<td>1</td>
<td>6</td>
<td>Parking and circulation are efficient and adequate for future expansion</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>Parking is adequate for present needs; circulation is adequate</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>No expansion potential for parking; circulation is inefficient</td>
</tr>
<tr>
<td>D. Security</td>
<td>1</td>
<td>4</td>
<td>Site lighting is adequate; site has security booths and emergency phones</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>Site lighting is adequate; some security booths or emergency phones</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>Site lighting is inadequate; no security booths or emergency phones</td>
</tr>
<tr>
<td>E. Drainage</td>
<td>1</td>
<td>5</td>
<td>Positive slope away from buildings; roof drainage to underground system; surface drainage to catch basins or swales</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>Some ponding is obsnene; flat slope allows standing water at buildings or between buildings</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>Extensive pooling of water adjacent to buildings; poor slope and drainage</td>
</tr>
<tr>
<td>F. Paving</td>
<td>1</td>
<td>4</td>
<td>Pedestrian walkways provided for circulation between buildings; paved parking areas</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>Pedestrian walkways do not provide for adequate circulation between buildings; only partial paved parking</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>No paved pedestrian walkways; no paved parking</td>
</tr>
<tr>
<td>G. Site Maintenance</td>
<td>1</td>
<td>2</td>
<td>Site is landscaped and appears well maintained</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>Landscaping is adequate but maintenance needs improvement</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>Little site landscaping; does not appear well maintained</td>
</tr>
<tr>
<td>H. Signage</td>
<td>1</td>
<td>2</td>
<td>Building numbers/names identified; parking and disabled signage exists Rooms are numbered; exits properly marked</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>Signage is minimal, except for emergency exit identification</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>Lack of adequate building/room identification; poor emergency signage</td>
</tr>
</tbody>
</table>
Achieving consistency in the facility condition survey and repair request validation process has long been a key SBCTC objective. The effort to achieve consistency in this process has focused on two main elements:

1) The surveyor in evaluating capital repair deficiencies,

2) The individual colleges in identifying candidates for capital repair funding.

In order to assist both the colleges and the surveyor to be more consistent in identifying legitimate candidates for capital repair funding, the SBCTC in 2001 developed a set of guidelines for use in the condition survey updates. The guidelines reiterate the objective of capital repair funding, and are intended to help the surveyor and the colleges to determine whether work is to be funded from operating dollars such as RMI or M&O, or from a capital repair request by identifying circumstances that do not meet the intent of capital repair funding.

Achieving consistency in the facility condition survey/capital repair request validation process has been a key objective of the SBCTC since the first survey was initiated in 1989. Over the years, every effort has been made to insure that a consistent approach is followed by the survey teams in evaluating capital repair deficiencies at each college. However, to achieve this objective, it is also necessary that the individual colleges are consistent in identifying candidates for capital repair funding.

The repair category represents funding to replace or repair major components and systems, as well as building and infrastructure failures. This category of repair is NOT intended for renovation or remodel of facilities. In addition, capital repairs must conform to the OFM definition of an allowable capital expense. Smaller repairs need to be accommodated with operations and maintenance dollars from the operating budget. Finally it is critical that capital repairs be coordinated with the facility master plan and not be wasted in a building that will be renovated or replaced in the short term.

The following criteria have been developed to reiterate the objective of capital repair funding and to assist the colleges and the surveyor to identify legitimate candidates for
capital repair funding. Again, it is important to know when work is to be funded from operating dollars or from a capital request category. The guidelines and conditions included herein are provided to help identify circumstances that do not meet the intent of capital repair funding.

GENERAL GUIDELINES

Capital Repair funds may be used for repair/replacement of building systems and fixed equipment, or campus infrastructure, if one or more of the following conditions exist:

1) The system or equipment is experiencing increasing incidence of breakdown due to age and general deterioration. However, if the deterioration is not readily visible, the college must provide documentation as to the age of the system or component, and substantiate increasing repair costs.

2) The overall quality of the system or equipment is poor, resulting in deterioration sooner than normal design life expectancy would otherwise indicate.

3) The system or equipment is no longer cost-effective to repair or maintain. This implies that the cost of repair is estimated to be 50% or more of the cost of replacement, or replacement parts are virtually impossible to obtain or are at least 150% of the cost of parts for similar contemporary equipment.

4) For a deficiency to be considered a capital repair, the estimated MACC cost of corrective action should exceed $20,000 for a single item. However, the same individual items in one building (e.g. door closer mechanisms) can be combined into a single deficiency if they are all experiencing the same problems and are deteriorated to the same degree.

The following additional considerations apply to the facility condition survey deficiency validation process:

1) If a building system or major piece of equipment is experiencing component failure at a rate greater than what is considered normal, the entire piece of equipment should be replaced. However, maintenance/repair records should be available to support the rate of component failure.

2) If replacement of a piece of equipment is being considered because of the inability to obtain replacement parts, vendor confirmation should be available.
3) If a system or equipment operation problem exists that may lead to replacement consideration, but the cause of the problem/s is not readily evident, any troubleshooting and/or testing to identify the problem and its cause should be completed prior to the survey. The surveyor is not responsible for detailed analysis or troubleshooting. Recurring equipment problems should be documented by the college.

4) Any operational problems with equipment (e.g. air flow/ventilation or system balancing) that may require equipment replacement should be identified prior to the surveyor visiting the campus.

5) If a major system replacement is requested (e.g. a steam distribution system), the campus should first conduct an engineering/cost analysis to determine whether replacement with the same system will be cost-effective over the life-cycle of the replacement or whether an alternative system would be more cost-effective.

6) While piecemeal replacement of systems and components may be necessary operationally, replacement programming should nevertheless conform to an overall campus facility maintenance plan that addresses the maintenance and replacement of major systems such as HVAC from a campus-wide perspective.

7) If structural problems are suspected with respect to foundations, substructure, superstructure components, exterior closure components or roof systems, a structural engineering evaluation should be conducted by the college prior to the visit of the surveyor. Any resulting reports should be made available to the team at the time of their visit.

8) Capital repair funds will NOT be used for facility remodel/improvements.

9) Capital repair funds will NOT be used to repair facilities acquired by a college (e.g. gift from a foundation, COP, local capital) until they have been in state ownership for a minimum of seven years.

10) Capital repair funds shall NOT be used solely to achieve energy conservation, ADA compliance, hazardous materials abatement, or code compliance.

11) Capital repair funds shall NOT be used to repair or replace systems or equipment used predominantly for instructional purposes.

In addition, it should be understood that the surveyor will not be conducting a baseline condition survey for a college. The college should have identified capital repair deficiencies it considers candidates for funding prior to the arrival of the surveyor. The surveyor will validate these candidates and may, during their facility walk-through to rate facility condition, identify additional candidates. However, the prime responsibility for determining repair needs is with the college.
In order to provide a common focus for all colleges on the types of deficiencies and project recommendations they propose as a candidate for capital repair funding, specific conditions for which capital repair funds will not be used have been identified. These conditions are provided below by major building system.

EXTERIOR CLOSURE SYSTEMS/COMPONENTS

Capital repair funds will **NOT** be available for the following conditions:

1) Painting of exterior wall surfaces, unless the substrate also needs to be replaced due to damage.

2) Upgrading of door/closure hardware if the existing hardware is still functional. If hardware must be replaced because parts can no longer be obtained, the use of capital repair funds may be permissible.

3) Masonry cleaning, other than to prep a surface for restoration work. Masonry cleaning, such as for mildew removal, is considered part of the on-going maintenance responsibility of a campus. **Exterior masonry wall restoration, such as tuckpointing, is a valid use of capital repair funds**

4) Patching, sealing and re-coating of EFIS or plaster or stucco surfaces.

5) Repair/renovation of building sealants, damp proofing or coatings.

6) Door or window replacement for energy conservation only.

7) Wall or ceiling insulation retrofits.

INTERIOR CLOSURE/FLOOR SYSTEMS/COMPONENTS

Capital repair funds will **NOT** be available for the following conditions:

1) Painting of interior wall surfaces, unless the substrate also needs to be replaced due to damage or deterioration.

2) Upgrading of door/closure hardware if the existing hardware is still functional. If hardware must be replaced because parts can no longer be obtained, the use of capital repair funds may be permissible.
3) Patching/minor repairs to interior wall and ceiling surfaces.

4) Replacement of suspended ceiling tiles that are dirty or stained, unless the suspension system also needs replacement.

5) Repair/replacement of movable partitions.

6) Moving of interior walls/modification of spaces (This remodeling should be part of a matching fund, minor works program, local capital or renovation project).

7) Repair or replacement of wall coverings, window coverings, draperies, casework and office partitions.

8) Replacement of floor coverings, unless the floor structure underneath must also be repaired.

ROOF SYSTEM/COMPONENTS

Capital repair funds will **NOT** be available for the following conditions:

1) Repair of blisters or tears in built-up or single-ply membrane roofs,

2) Minor replacement of shingles or tiles.

3) Gutter/downspout repairs or repairs to curbs, flashings or other roof appurtenances. Replacement will generally be done as part of a total roof replacement.

4) Moisture testing. This is the responsibility of the campus as part of its annual roof maintenance strategy. If evidence of moisture is suspected under the membrane, but is not readily apparent, the campus should have a moisture survey performed to provide data to the survey team.

5) Repair to low spots on flat roofs, unless the condition can be shown to result in water infiltration and damage to underlying components.

Each college is encouraged to implement an annual roof maintenance program that includes roof surface cleaning, gutter and downspout or roof drain cleaning, minor repairs to membrane and flashing and spot re-coating of UV retardants where these are worn. Each college is also encouraged to implement a roof management plan that includes standardization of roof membrane types and tracking of wear, repairs and manufacturer’s warranties.
PLUMBING SYSTEMS/COMPONENTS

Capital repair funds will **NOT** be available for the following conditions:

1. Replacement of functional fixtures such as lavatories, urinals, toilets, faucets and trim simply because they are older.
2. Replacement of water supply piping simply because of age, unless it can be shown through pipe samples or other evidence of significant leaks in several areas in a building that piping failures are generalized throughout the system. Otherwise, piping replacement should be part of a comprehensive building renovation.
3. Replacement of domestic hot water heaters of 80 gallons or smaller.

HVAC SYSTEMS/EQUIPMENT

Capital repair funds will **NOT** be available for the following conditions:

1. Expansion of system capacity due to building/space modifications driven by instructional programs if the existing system is in good condition. Such system expansion should be funded out of operating or program related funds, or be included in a minor works project.
2. Bringing building/spaces up to current ventilation or indoor air quality standards. However, if system replacement is warranted due to age and condition, the replacement system should meet all current standards, code, and other requirements.
3. Providing heating/cooling for buildings/spaces where none currently exists. If however, a building currently has no cooling, but the heating/ventilation system must be replaced, the new system may include cooling.
4. Adding heating/cooling requirements to individual spaces due to changes in the use of space. This should be funded out of operating or program related funds.
5. Integrating incompatible DDC systems unless there is no vendor to support one or more of the existing systems. Written vendor confirmation must be available.
6. Expanding/upgrading a DDC system, except for HVAC system/equipment replacement where the new equipment can be tied into the existing DDC system.
7) Replacement/upgrading of an existing DDC system will be considered only if the manufacturer provides written documentation that the existing system will no longer be supported for repairs/maintenance as of a certain date, and that replacement parts will no longer be available through the manufacturer or through a third-party vendor as of a certain date.

8) Testing, balancing or general commissioning of HVAC equipment.

ELECTRICAL SYSTEMS/COMPONENTS

Capital repair funds will **NOT** be available for the following conditions:

1) Addition of emergency/exit lighting where none currently exists. This is a campus responsibility, to be funded with campus funds.

2) Addition of GFI outlets near sinks to replace regular outlets. This is a campus responsibility to be funded with campus funds.

3) Adding circuits to an individual space to address capacity problems due to space use or program use changes. Space modifications undertaken by a campus should include funds to address electrical upgrades required as part of the modification.

4) Adding lighting to an individual space where lighting is inadequate due to space use or program use changes. Lighting upgrades should be addressed as part of the space modification process and funding as a local fund project, conservation project, renovation project, or minor works program project.

5) Replacing functional lighting fixtures simply because they are older. Colleges should work with General Administration to provide an energy audit and potentially use ESCO (performance contracts) to upgrade energy systems, lighting, etc.

6) If a request is made to replace older distribution or lighting panels that are still functional because replacement breakers are no longer available, documentation must be available supporting that claim.

7) Additions to site lighting around buildings and campus walkways are allowable for security considerations. However, the college must support the need with a lighting study that identifies specific inadequacies and quantifies light levels. The survey team is not charged with undertaking light level studies. Additions to parking lot lighting must be funded out of parking fees.
FIRE/SAFETY SYSTEMS/COMPONENTS

Capital repair funds will **NOT** be available for the following conditions:

1) Installation of a fire sprinkler system where none currently exists, unless the local fire marshal has mandated in writing that a system be installed and a specific compliance date is part of that mandate.

2) Installation of a fire alarm system where none currently exists, unless the local fire marshal has mandated such installation in writing and a specific compliance date is part of that mandate.

3) Replacement/upgrading of an existing fire alarm system will be considered only if the manufacturer provides written documentation that the existing system will no longer be supported for repairs/maintenance as of a certain date, and that replacement parts will no longer be available through the manufacturer or through a third-party vendor as of a certain date.

4) Installation of a security, telecommunications or information technology system where none currently exists.

5) Repairs to or expansion/enhancement of existing security, telecommunications or information technology systems.

PAVING/SITE COMPONENTS

Capital repair funds will **NOT** be available for the following conditions:

1) Parking lot maintenance and repair, including pavement repairs, crack sealing, seal coating, striping, signage and lighting. Colleges should fund all parking lot maintenance/repair through parking fees or facility fees.

2) Repair of trip hazards on sidewalks, or repairs caused by tree root damage.

3) Tennis court repair/resurfacing (O&M or local funds, or student supported COPs).

4) Running track repair/resurfacing (O&M or local funds, or student supported COPs).

5) Repairs/replacement of landscape irrigation systems, replacement of turf and landscape plantings, athletic fields, lighting systems and scoreboards.
Appendix H
Wenatchee Campus
Project Request Reports